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We introduce a new kind of quantum measurement that is defined to be symmetric in the sense of
uniform Fisher information across a set of parameters that uniquely represent pure quantum states in the
neighborhood of a fiducial pure state. The measurement is locally informationally complete—i.e., it
uniquely determines these parameters, as opposed to distinguishing two arbitrary quantum states—and it is
maximal in the sense of a multiparameter quantum Cramér-Rao bound. For a d-dimensional quantum
system, requiring only local informational completeness allows us to reduce the number of outcomes of the
measurement from a minimum close to but below 4d − 3, for the usual notion of global pure-state
informational completeness, to 2d − 1.
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A fundamental consequence of quantum mechanics is
the inability to determine the quantum state of a single
physical system. A well-posed problem in quantum state
tomography is this: given many copies of a quantum
system, all assumed to be in the same state ρ, find a
measurement to perform on each copy that is sufficient to
specify ρ uniquely in the limit of an infinite number of
copies, i.e., from the outcome probabilities.
In quantum theory, measurements are represented by

positive-operator-valued measures (POVMs), whose ele-
ments, Eξ, are positive operators satisfying the complete-
ness condition,

P
ξE

ξ ¼ 1. If we perform the measurement
on a system in state ρ, the probability of outcome ξ is
pξ ¼ trðρEξÞ. If the statistics of the outcome probabilities
are sufficient to determine all the parameters of the state
uniquely, then the POVM is said to be a tomographically or
informationally complete POVM (IC-POVM).
In this Letter, we consider measurements whose outcome

probabilities, though not globally informationally com-
plete, can determine a quantum state in a local neighbor-
hood of a fixed, but arbitrary fiducial state; we dub such
measurements locally informationally complete. We quan-
tify the information content of a measurement using the
multiparameter Fisher-information matrix [1]. We look for
measurements that satisfy two requirements. First, the
information obtained should be maximal relative to a
fundamental bound on the classical Fisher-information
matrix, established by Gill and Massar [2]; by measuring
the amount of classical Fisher information relative to the
corresponding quantum Fisher information, the Gill-
Massar (GM) bound is the multiparameter expression of
the quantum Cramér-Rao bound [3–6]. Saturating the GM
bound requires that the POVM elements be rank one.

Second, we look for measurements such that the classical
Fisher information is distributed as uniformly as possible
among the parameters of the quantum state. Measurements
that satisfy these requirements are as efficient as
possible for measuring all the parameters of a quantum
state simultaneously; we call such measurements Fisher
symmetric.
In this Letter, we specialize to pure states [7], where

Fisher symmetry means that all the parameters of the pure
state are determined with the same resolution relative to the
corresponding quantum Cramér-Rao bound, and we refer
to the measurements that meet our requirements as pure
Fisher-symmetric informationally complete (PFSIC). We
show that 2d − 1 outcomes are necessary and, by example,
sufficient for a PFSIC measurement, in contrast to a
minimum close to, but below, 4d − 3 outcomes required
for global pure-state informational completeness [8].
Moreover, in accordance with the GM bound, each of
the 2d − 2 parameters of the pure state is determined with a
resolution half that of a separate quantum-limited meas-
urement of that parameter.
What is the minimal number of elements for a POVM to

be globally informationally complete? A full-rank quantum
state, described by a normalized density operator ρ in a
d-dimensional Hilbert space, is specified by d2 − 1 real
parameters. Since the outcome probabilities establish a
series of linear constraints for the mixed-state parameters
and the POVM operators have to satisfy the completeness
condition, it is simple to conclude that an IC-POVM must
have at least d2 elements. If, in addition, one asks for a
minimal, rank-one IC-POVM and demands global sym-
metry in the geometry of the rank-one POVM elements,
one arrives at SIC-POVMs [9–11], whose existence in all
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dimensions is a topic of both mathematical and physical
interest.
These considerations change if one knows that ρ is a pure

state. Since the relation between the outcome probabilities
and the pure-state parameters is quadratic rather than linear,
the problem of the minimal number of elements in a global
IC-POVM for pure states is more complicated. Flammia,
Silberfarb, and Caves [12] considered pure-state informa-
tionally (PSI-)complete POVMs, whose outcome proba-
bilities are sufficient to determine a generic pure state (up to
a global phase), i.e., all states except for a set of pure states
that is dense only on a set of measure zero. They showed
that the minimal number of elements for these POVMs is
2d, and they conjectured that 2d outcomes suffice even if
the POVM elements are rank one. Finkelstein [13] con-
firmed this conjecture, but went on to show that if a rank-
one POVM achieves global informational completeness for
all pure states, not just a generic set [he called such a
POVM PSI really (PSIR-)complete], then the POVM must
have at least 3d − 2 POVM elements. Finkelstein left open
the question of whether a PSIR-complete POVM with this
number of outcomes exists. Recently, in a tour de force of
mathematical physics, Heinosaari, Mazzarella, and Wolf
[8] showed that a POVM that identifies all pure states has
minimally 4d − 3 − cðdÞαðdÞ outcomes, where 1≤ cðdÞ≤
2 and αðdÞ is the number of 1’s in the binary expansion of
d − 1. This brief discussion illustrates the complicated
nature of global informational completeness for pure states.
Here, we consider a different tomographic problem,

which might be called local or point tomography. In this
problem, an experimenter has more than just the promise of
a pure state: she knows which pure state she is trying to
prepare and knows she can prepare it quite well, except that
the unitary operators used in the preparation have system-
atic errors; though the prepared state is pure, it is different
from the fiducial state the experimenter is aiming for. The
experimenter wants to find a measurement sufficient to
identify all small discrepancies from this fiducial state. We
quantify the “goodness” of a measurement with the multi-
parameter Fisher-information matrix [1]. Fisher informa-
tion is a key tool in statistics, which allows one to bound the
performance of any estimator, and it has played a promi-
nent role in the development of quantum information and
metrology, where it has been suitably generalized to the
quantum setting [3–6]. It is the appropriate tool here
because it provides a definitive answer to questions about
estimating local deviations from a fiducial state.
Now, we formulate the problem with precision, first

generally for mixed states and, then, for the pure-state
context analyzed in this Letter [7]. An unknown quantum
state ρðxÞ depends on a vector x ¼ ðx1;…; xpÞ of p real
parameters. For density operators of rank l in d ≥ l
dimensions, p ¼ 2dl − l2 − 1; for full-rank density
operators, p ¼ d2 − 1, and for pure states, p ¼ 2d − 2.
The fiducial state can be labeled by x ¼ 0. In the following,

we are interested in the quantum and classical Fisher-
information matrices evaluated at the fiducial state, i.e.,
at x ¼ 0.
The quantum Fisher information is a p × p real, sym-

metric matrix QðρÞ, whose matrix elements are

QαβðρÞ ¼
1

2
tr½ρðLαLβ þ LβLαÞ�; ð1Þ

with the (Hermitian) symmetric logarithmic derivative
(SLD) operators Lα, one for each parameter, determined
implicitly by ∂ρ=∂xα ¼ 1

2
ðLαρþ ρLαÞ. We can reparame-

trize the quantum state to make Q the identity matrix.
Given a POVM, with elements Eξ and outcome prob-

abilities pξ ¼ trðρEξÞ, the classical Fisher-information
matrix is a p × p real, symmetric matrix C, defined by

Cαβ ¼
X
ξ

1

pξ

∂pξ

∂xα
∂pξ

∂xβ : ð2Þ

The sum over ξ here is restricted to Eξ that are not
orthogonal to the fiducial state ρ, i.e., for which
pξ ¼ trðρEξÞ ≠ 0.
Gill and Massar [2] proved that for any states ρðxÞ and

any POVM, the classical Fisher-information matrix C
satisfies

trðQ−1CÞ ¼ trðQ−1=2CQ−1=2Þ ≤ d − 1; ð3Þ

with equality if and only if all the POVM elements are rank
one, and none is orthogonal to the fiducial state. The GM
quantity, trðQ−1CÞ, is invariant under reparametrization of
the quantum states. It is most easily interpreted when the
parameters are chosen so that Q is the identity matrix.
The unit elements on the diagonal of Q then express the
quantum limit, called the quantum Cramér-Rao bound, on
estimating each of the parameters separately [6]. The
corresponding diagonal elements of the classical Fisher
matrix give the performance of the POVM in determining
these same parameters in units of the quantum limit. The
GM quantity is the sum of the diagonal elements of C;
the bound (3) expresses the quantum limit on estimating all
the parameters simultaneously and, as such, is a Fisher-
information expression of the uncertainty principle. Zhu
[14] has made use of the positive symmetric matrix
Q−1=2CQ−1=2 in a study of information complementarity
and incompatible observables.
We call a POVM Fisher symmetric if it saturates the GM

bound (3) and has a classical Fisher matrix distributed as
uniformly as possible among the parameters of the quan-
tum state. What we mean by as uniformly as possible is that
the measurement minimizes the quadratic quantity
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trðQ−1CQ−1CÞ ¼ trððQ−1=2CQ−1=2Þ2Þ

≥
½trðQ−1=2CQ−1=2Þ�2

p

¼ ðd − 1Þ2
p

: ð4Þ

The inequality follows directly from minimizing this
quadratic quantity subject to the linear trace constraint.
The absolute minimum is achieved if and only if the
classical Fisher matrix is proportional to the quantum
Fisher matrix, i.e., C ¼ ðd − 1ÞQ=p. For full-rank density
operators, however, there is generally no POVM that
achieves the absolute minimum; it can be achieved only
for qubits and for the maximally mixed state in all
dimensions [7]. For any density operator, however, the
classical Fisher matrices are a convex set under coin-
flipping convex combinations of the underlying POVMs;
since the quantity (4) is convex, global minima are
guaranteed to exist. Thus, the study of Fisher symmetry
for full-rank density operators will be focused on finding
what the minimum value is and what POVMs achieve it;
such POVMs determine a quantum state locally as effi-
ciently as possible.
For pure states, it is possible to achieve C ¼ 1

2
Q, as we

now show. A POVM that achieves C ¼ 1
2
Q, what we call a

PFSIC, can estimate all the parameters of a pure state with
half the quantum-limited resolution with which each could
be estimated separately. The unknown pure state ρðxÞ ¼
jΨðxÞihΨðxÞj depends on a vector x of 2d − 2 real
parameters. We denote the fiducial state x ¼ 0 by j0i,
i.e., jΨð0Þi ¼ j0i. By assumption, the unknown pure state
jΨðxÞi is close to j0i and, thus, can be parametrized to
linear order as

jΨðxÞi ¼ j0i þ
Xd−1
k¼1

ðxk0 þ ixk1Þjki; ð5Þ

where the set fjkigk¼0;1;…;d−1 is an orthonormal basis,
x ¼ ðx1;0; x1;1;…; xd−1;0; xd−1;1Þ, and jxkσj ≪ 1 for k ¼
1;…; d − 1, σ ¼ 0, 1. Keeping only the terms linear in
the parameters, we get

ρðxÞ ¼ j0ih0j þ
X
k;σ

xkσXkσ ¼ j0ih0j þ
X
α

xαXα; ð6Þ

where

Xkσ ¼ ð−iÞσðj0ihkj þ ð−1Þσjkih0jÞ; ð7Þ

i.e., Xk0 ¼ j0ihkj þ jkih0j and Xk1 ¼ −ij0ihkj þ ijkih0j,
for k ¼ 1;…; d − 1. In Eq. (6), we ignore second-order
terms because they do not contribute either to the quantum
Fisher information or to the measurement-induced classical
Fisher information at the fiducial point. In accordance with

the foregoing, we sometimes let a single Greek index stand
for both k and σ, as in the last form of Eq. (6). The
Hermitian operators Xα satisfy trðXαXβÞ ¼ 2δαβ.
When ρðxÞ is a pure state, the SLDs are easy to find. At

the fiducial state, the SLDs are Lα¼2∂ρðxÞ=∂xαjx¼0¼2Xα,
and the quantum Fisher-information matrix is Q ¼ 4I2d−2,
where In denotes the n × n identity matrix. Thus, we have
chosen from the start a parametrization that is only a
uniform rescaling away from making the quantum Fisher
matrix the identity.
Now, consider any POVM that saturates the GM bound,

i.e., has n rank-one POVM elements, none of which is
orthogonal to ρð0Þ ¼ j0ih0j, and take the POVM elements
to be

Eξ ¼ jψξihψξj ¼
Xd−1
k;j¼0

aξkðaξjÞ�jkihjj; ð8Þ

where the POVM vectors are

jψξi ¼
Xd−1
k¼0

aξkjki; ξ ¼ 0;…; n − 1: ð9Þ

The POVM completeness condition,
P

ξE
ξ ¼ 1, becomesP

ξðaξjÞ�aξk ¼ δjk. Defining

aξk ¼ bξk þ icξk; k ¼ 0;…; d − 1; ð10Þ

and gathering up the various components into n-dimen-
sional column vectors,

bk ¼

0
BBBBB@

b0k
b1k

..

.

bn−1k

1
CCCCCA
; ck ¼

0
BBBBB@

c0k
c1k

..

.

cn−1k

1
CCCCCA
; k¼ 0;1;…; d− 1;

ð11Þ

we can put the completeness condition in the form

bj · bk þ cj · ck ¼ δjk;

bj · ck − cj · bk ¼ 0;
j; k ¼ 0; 1;…; d − 1: ð12Þ

Choice of phase of the POVM vectors (9) allows us to make
aξ0 ¼ bξ0 real and nonnegative (thus, c

ξ
0 ¼ 0) for all ξ. Since

we now have c0 ¼ 0, there are 2d − 1 nonzero vectors (11).
It is useful to spell out, separately, the j ¼ 0 or k ¼ 0 parts
of the completeness conditions,
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b0 · b0 ¼ 1;

b0 · bk ¼ b0 · ck ¼ 0; k ¼ 1;…; d − 1: ð13Þ

The probability to obtain the outcome ξ at the fiducial
state is

pξ ¼ h0jEξj0i ¼ jaξ0j2 ¼ ðbξ0Þ2 > 0: ð14Þ

Notice that the vector b0 is a normalized vector that has
strictly positive components. We also have ∂pξðxÞ=∂xα ¼
trðEξXαÞ, i.e.,

∂pξ

∂xk0 ¼ hkjEξj0i þ h0jEξjki ¼ 2bξ0b
ξ
k; ð15aÞ

∂pξ

∂xk1 ¼ −ihkjEξj0i þ ih0jEξjki ¼ 2bξ0c
ξ
k: ð15bÞ

The definition (2) of the classical Fisher matrix gives, for
j; k ¼ 1;…; d − 1,

Cj0;k0 ¼ 4
X
ξ

bξjb
ξ
k ¼ 4bj · bk; ð16aÞ

Cj1;k1 ¼ 4
X
ξ

cξjc
ξ
k ¼ 4cj · ck; ð16bÞ

Cj0;k1 ¼ Ck1;j0 ¼ 4
X
ξ

bξjc
ξ
k ¼ 4bj · ck: ð16cÞ

The classical Fisher matrix is a matrix of inner products
of the 2d − 2 n-dimensional vectors f2bk; 2ckgd−1k¼1. The
rank of such a matrix, called a Gram matrix, is the
dimension of the span of the vectors going into the inner
products, so the rank of the classical Fisher matrix is
bounded above by minðn; 2d − 2Þ.
In the pure-state case, the Fisher-symmetry condition

becomes C ¼ 1
2
Q ¼ 2I2d−2. To satisfy this condition, C

must be full rank, i.e., have rank 2d − 2, which implies that
n ≥ 2d − 2. Since C is full rank, it is invertible, and the
measurement is locally informationally complete in that it
uniquely determines all parameters in the limit of infinitely
many measurements.
In the parametrization we are using, the Fisher-

symmetric POVM must satisfy

1
2
Cj0;k0 ¼ 2bj · bk ¼ δjk;

1
2
Cj1;k1 ¼ 2cj · ck ¼ δjk; j; k ¼ 1;…; d − 1:

1
2
Cj0;k1 ¼ 2bj · ck ¼ 0;

ð17Þ

Combining these Fisher-symmetry conditions with the
completeness conditions (13), we see that the vectors
f ffiffiffi

2
p

bk;
ffiffiffi
2

p
ckgd−1k¼1 are a set of 2d − 2 orthonormal vectors

in an n-dimensional subspace, which is orthogonal to b0.
We can now conclude that n ≥ 2d − 1.
It is clear that PFSICs exist for all n ≥ 2d − 1, since

they can be constructed by choosing an n-dimensional
vector b0 with all positive components and then finding
2d − 2 orthonormal vectors in the subspace of dimension
n − 1 ≥ 2d − 2 orthogonal to b0. In the Supplemental
Material [15], we construct a minimal (n ¼ 2d − 1)
PFSIC POVM by choosing b0 symmetrically, i.e., bT

0 ¼
ð1; 1;…; 1Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2d − 1
p

and using a manifestly symmetric
method to construct the remaining vectors. For qubits, this
PFSIC reduces to the trine measurement, with the POVM
vectors corresponding to outcomes in the equatorial plane
of the Bloch sphere. The trine measurement is locally
informationally complete for pure states near the north pole
of the Bloch sphere, but it is not globally informationally
complete because it cannot distinguish states whose Bloch
vectors differ by a sign flip of the z component of the Bloch
vector. This example illustrates how PFSICs fail to be
globally informationally complete. Yet, they are informa-
tionally complete over a region containing the fiducial
state: here, the northern hemisphere of the Bloch sphere, a
more complicated shape in higher dimensions.
In the Supplemental Material [15], we also construct a

POVM that comes from flipping a coin with probabilities
pχ and pτ to choose between measuring in one of two
orthonormal bases

jχξi ¼ uξ0j0i þ
P

d−1
j¼1 u

ξ
jjji;

jτξi ¼ −iuξ0j0i þ
P

d−1
j¼1 u

ξ
jjji;

ξ ¼ 0; 1;…; d − 1; ð18Þ

with uξ0 > 0. With the POVM vectors chosen to be jψξi ¼ffiffiffiffiffipχ
p jχξi and jψdþξi ¼ ffiffiffiffiffi

pτ
p jτξi, the Fisher-information

matrix (16) is diagonal, with diagonal components Cj0;j0 ¼
4pχ for the estimates of the real parts, xk0, of the amplitudes,
and Cj1;k1 ¼ 4pτ for estimates of the imaginary parts, xk1.
When pχ ¼ pτ ¼ 1

2
, we have a PFSIC. Other weightings of

the coin give different trade-offs, within the GM bound,
between determining the real and imaginary parts of the
amplitudes. This example illustrates the sense in which the
GM bound can be thought of as an uncertainty principle for
measuring, simultaneously, the parameters that specify a
pure state. For a qubit, the two bases (18) correspond to
measurements of the Pauli operators σx and σy.
It is useful to clarify what freedom we have in choosing a

PFSIC. Starting with a minimal PFSIC, i.e., with an
orthonormal set fb0;

ffiffiffi
2

p
bk;

ffiffiffi
2

p
ckgk¼1;…;d−1, of (2d − 1)-

dimensional real vectors, where b0 has all positive com-
ponents, we can do any (active) orthogonal transformation
O to get a new set B0 ¼ Ob0 and Bj ¼ Obj, Cj ¼ Ocj,

for j ¼ 1;…; d − 1, subject to the requirement that Bξ
0 > 0

for all ξ [16]. To get a nonminimal PFSIC, we add
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additional dimensions to the real vector space and allow O
to map into these extra dimensions. In terms of compo-
nents, we have

Bξ
j ¼

X2d−2
η¼0

Oξ
ηb

η
j ; j ¼ 0; 1;…; d − 1; ð19Þ

Cξ
j ¼

X2d−2
η¼1

Oξ
ηc

η
j; j ¼ 1;…; d − 1: ð20Þ

Letting jϕξi be the POVM vectors for the primed real
vectors, we have

jϕξi ¼
Xd−1
j¼0

ðBξ
j þ iCξ

jÞjji ¼
X2d−2
η¼0

Oξ
ηjψηi: ð21Þ

Thus, our freedom is to do any orthogonal mixing of the
POVM vectors, subject to Bξ

0 ¼ h0jϕξi > 0 [16].
How does this compare with the usual freedom for

rank-one POVMs? In complete analogy with the Hughston-
Josza-Wootters freedom for pure-state ensemble decom-
positions of a density operator [17], for POVMs, we are
asking for the freedom in writing the unit operator as a sum
of rank-one operators. Generally, that freedom is the ability
to mix the POVM vectors with any unitary matrix, which
always yields another POVM. The restriction here is that
we can only use real unitaries, i.e., orthogonal matrices, that
leave b0 with all nonzero components.
The most complete information we can have of a

physical system is its quantum state. We access this
information by making repeated measurements on systems
prepared in the same state. There are two fundamental and
practical questions about such measurements: (i) Which
schemes are sufficient to specify the state uniquely?
(ii) Which schemes provide the most information per
measurement? Typically, such questions are studied sepa-
rately, the former using tools of linear algebra and convex
geometry and the latter using quantum generalizations of
Fisher statistics or other methods. Here, we bring these two
lines of questioning together to construct measurements
that are minimal, symmetric, and informationally complete,
but in a local, Fisher-statistical sense rather than in the
global, geometric sense. We have explicitly constructed
measurements with 2d − 1 outcomes that are sufficient to
estimate, simultaneously, all the parameters of pure quan-
tum states near a fiducial state. Moreover, these measure-
ments provide equal and optimal information about all the
parameters. The quantum price for the simultaneous
estimation, in accordance with the GM uncertainty princi-
ple (3), is that each parameter is determined with half the
sensitivity with which it could be determined separately.
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