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Abstract
In this paperwe approach the theory of continuousmeasurements and the associated unconditional
and conditional (stochastic)master equations from the perspective of quantum information and
quantumcomputing.We do so by showing how the continuous-time evolution of thesemaster
equations arises fromdiscretizing in time the interaction between a system and a probe field and by
formulating quantum-circuit diagrams for the discretized evolution.We then reformulate this
interaction by replacing the probe fieldwith a bath of qubits, one for each discretized time segment,
reproducing all of the standard quantum-opticalmaster equations. This provides an economical
formulation of the theory, highlighting its fundamental underlying assumptions.

1. Introduction andmotivation

The strength of a projectivemeasurement ismade known inweakness. Althoughwe are taught fromyouth that
quantummeasurements project the target systemonto an eigenstate of themeasured observable as an
irreducible action, closer inspection reveals amore nuanced reality.Measurements involve coupling quantum
systems tomacroscopic devices viafinite-energy interactions, these devices have finite temporal resolution, and
a host of imperfections lead to encounters with the classical world that violate unitarity without conforming to
the projective-measurementmold.

Of course, inmany scenarios these discrepancies arefleeting and the projective description is all that is
needed—and sometimes all that can be observed!Modern experiments, however, show projective
measurements for what they are, and if we are to glory in this revelation, we need tools like the theory of
quantum trajectories, which generalizesmeasurement projection toweak, continuousmonitoring of a quantum
system.

Consider using a transition-edge sensor to detect photons. As a photon is absorbed by the detector, the
output current begins to drop. Atfirst it is difficult to tell the difference between a photon and thermal
fluctuations, but as the current continues to dropwe becomemore andmore confident of the detection
prognosis until we have integrated enough current deficiency to announce a detection. The accumulating
current deficiency is the result of a continuous sequence ofweakmeasurements (sometimes called gentle or
fuzzy), where the name signifies that eachmeasurement outcome (in this case output current integrated over a
short time interval) contains little information about the systembeingmeasured and consequently only gently
disturbs that system.Many repetitions of suchweakmeasurements, however, do have an appreciable effect upon
the system, sometimes as dramatic as a projectivemeasurement. Because thesemeasurements are nearly
continuous, differential equations are used to track the cumulative effect on the system, and because quantum
theory tells us themeasurement results are random, these differential equations are stochastic.
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The system’s time-dependent state (or some expectation value thereof) conditioned on a continuous
measurement record is called a quantum trajectory in the continuous-measurement literature. Physically, this
continuousmeasurement record is written on successive probes that interact weaklywith the system. The
stochastic differential equations that generate quantum trajectories take a variety of forms, going by names such
as stochastic Schrödinger equations, quantum-filtering equations, or in this paper stochastic master equations
(SMEs). A great deal of attention has been devoted both to deriving stochastic equations for and to observing
trajectories in a variety of physical systems, e.g., cavityQED [1], circuit QED (superconducting systems) [2–4],
fermionic systems [5–7], andmechanical systems [8–11].

The ability to resolve these subprojective effects opens upmany possibilities, including feedback protocols
and continuous-time parameter estimation. An example of feedback control is continuous-time quantum error
correction. Ahn et al [12] investigated using continuous-time quantummeasurements for this purpose, thus
pioneering a fruitful line of research [13–21]. Feedback control additionally allows one to viewweak
measurements as building blocks for constructing other generalizedmeasurements, as explored by Brun and
collaborators [22–25]. Continuousweakmeasurements have also been pressed into service for parameter and
state estimation [26–32]. One notable example is the single-shot tomography of an ensemble of identically
prepared qubits [33].

Error correction, parameter estimation, and state tomography are important subjects in quantum
computation and information. Unfortunately,much of the literature on continuousweakmeasurements, which
would otherwise be of interest to this community, suffers fromneedlessly arcane terminology and
interpretations.We take the refiner’sfire to trajectory theory, revealing a foundation of finite-dimensional probe
systems, unitary gates between the system and successive probes, and quantumoperations to describe the system
state after the probe ismeasured—all three familiar to the quantum information scientist of today. This process
also distills the essence of trajectory theory from its origins infield-theoretic probes, yielding insights that can be
appreciated even by veterans of the subject. A particularly useful tool that arises naturally within our approach is
the quantum circuit diagram, andwe take pains throughout our presentation to illustrate relevant principles
with this tool.

Of all the prior work on this subject, our paper ismost related to—and indeed inspired by—Brun’s elegant
work on qubitmodels of quantum trajectories [34]. In sections 3 and 5we describe the connection between his
work and ours. Looking further back to the origin of this line of research, onemight identify an important
precedent in thework [35] of the great theorists, Scully and Lamb (Lamb also did experiments), inwhich they
considered systems interacting with a spin bath. Themathematics literature has a related body of work that
studies approximating Fock spaceswith chains of qubits known as ‘toy Fock spaces’ [36–44].

The physics andmathematical-physics communities have a rich history of deriving the stochastic equations
ofmotion for a system subject to a continuousmeasurement. So rich, in fact, that these equations have been
discovered and rediscoveredmany times.Historically, the theorywas developed in the 80ʼs and early 90ʼs by a
number of authors:Mensky [45, 46], Belavkin [47], Srinivas andDavies [48], Braginskiĭ andKhalili [49],
Barchielli et al [50], Gisin [51], Diósi [52, 53], Caves [54, 55], Caves andMilburn [56],Milburn [57], Carmichael
[58], Dalibard et al [59], andWiseman [57]. Themost recent rediscovery was byKorotkov [60, 61], who
dubiously introduced yetmore terminology by christening his rediscovery ‘quantumBayesian theory.’

Many other good references on the topic are available for the interested reader.We recommend the
following articles: Brun [34], Jacobs and Steck [62],Wiseman’s PhD thesis [63], and for themathematically
inclined reader, Bouten et al [43, 64]. Helpful books include [58, 65, 66], and [67].

This paper is structured as follows: section 2 lays out our notational conventions. Section 3 gives a unified
description of strong andweakmeasurements via ancilla-coupledmeasurements, followed by quantum-circuit
depictions of the iterated interactions that limit to continuous quantummeasurements and their relation to
Markovicity. Section 4 develops the continuous-measurement theory in terms of a systemundergoing
successive weak interactionswith a probefield.

Sections 5 to 7 are the heart of the paper: they showhow to replace a probefieldwith probe qubits in
constructing quantum trajectories, and they explore the consequences of changing the parameters of the
formalism, i.e., using different probe initial states, different interaction unitaries, and differentmeasurements
on the probes. Section 5 contains thefirst derivation of a SME in ourmodel, focusing on the vacuumSMEs.
These arise when probe initial states are vacuum (ground state for probe qubits); the probe undergoes aweak
interactionwith the system and then experiences one of several kinds ofmeasurements, which lead to different
quantum trajectories. The theme of section 5 is thus exploring the effect of different kinds ofmeasurements on
the probes. Section 6 considers theGaussian SMEs, inwhich a probe field starts in aGaussian state, undergoes a
weak interactionwith the system, and then is subjected to homodynemeasurements. The theme of this section is
thus exploring the effect of different probe initial states, but themain contribution of this section is a technique
to accommodate all theGaussianfield states in probe qubits and to show that, since qubits have too small a
Hilbert space to achieve this by only changing the initial state, onemust alsomodify aspects of theweak system/
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probe interaction unitary. Section 7 explores a radical departure that allows interactions between the probe
qubits and the system that are strong, but occur randomly.

As an aid to intuition, section 8 presents visualizations of numerical solutions to some of the SMEs derived in
the previous sections. Finally, section 9 summarizes lessons learned fromour approach and suggests promising
related approaches.

2.Notational conventions

Confusion can arise when denoting the states of quantum-fieldmodes and two-level systems (qubits) in the
same context. In particular, that ñ = - ñ∣ ∣a n n n 1 and thus ñ = ñ∣ ∣a 1 0 , yet s ñ = ñ-∣ ∣0 1 , can lead to
momentary confusion and even persistent perplexity. The standard qubit states are the eigenstates of
s = ñá - ñá = å - ñá=∣ ∣ ∣ ∣ ( ) ∣ ∣a a0 0 1 1 1 ;z a

a
0,1 since the qubitHamiltonian is often proportional to sz—this is why

one chooses ñ∣0 and ñ∣1 to be the standard states—it is natural to regard ñ∣1 (eigenvalue−1 of sz) as the ground
state and ñ∣0 (eigenvalue+1) as the excited state. In doing so, one is allowing themultiplicative label -( )1 a to
trump the bitwise label a, which gives an opposite hint for what should be labeled ground and excited.

To allay this confusion, one good practice would be to label the standard qubit states by the eigenvalue,
-( )1 a, of sz , but insteadwe choose themore physical labeling of ñ = ñ∣ ∣g 1 as the ‘ground state’ and ñ = ñ∣ ∣e 0 as
the ‘excited state.’ In this notation, s ñ = ñ-∣ ∣e g , as expected; this notation plays well with the correspondence we
develop betweenfieldmodes and two-level systems.Our notation is illustrated infigure 1. As a further check on
confusion, we often label the vacuum state of a fieldmode as ñ∣vac instead of ñ∣0 .

Some useful relations between qubit operators are given below:

s s s

s s s

s s s
s s s
s

s s s s s
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Whenwriting qubit operators and states in theirmatrix representations, we order the rows and columns
starting from the top and left with ñ = ñ∣ ∣e 0 followed by ñ = ñ∣ ∣g 1 . Thus s = ñá- ∣ ∣g e has the representation

á á

ñ
ñ( )

∣ ∣
∣
∣

( )

e g

e

g
0 0
1 0

. 2.2

Thefirst place our notation has the potential to confuse is in howwe denote the eigenstates of sx. These
eigenstates are conventionally written as ñ = ñ  ñ( )∣ ∣ ∣0 1 2 , but we choose to denote themby

f ñ ñ  ñ = ñ  ñ =  ñ ( ) ( )∣ ≔ ∣ ∣ ∣ ∣ ∣ ( )g e
1

2

1

2
1 0 ; 2.3

i.e., we change the sign of the eigenstate with eigenvalue−1. This notation is illustrated infigure 1.
In our circuit diagrams, eachwire corresponds to an individual system; a collection of thosewires

corresponds to a tensor product of the systems. To keep track of the various systemswhenmoving between
circuit and algebraic representations, the tensor-product order equates systems left-to-right in equationswith

Figure 1.Bloch sphere illustration (z the vertical axis, x the horizontal axis, y direction suppressed) of our convention for qubit states
(left) and the conventional quantum-information notation (right). In conventional notation, the eigenstates of sx with eigenvalue
±1 are denoted by ñ = ñ  ñ∣ (∣ ∣ )0 1 2 , but in our qubit notation, we use the eigenstates f ñ = ñ  ñ =∣ (∣ ∣ )g e 2

ñ  ñ =   ñ(∣ ∣ ) ∣1 0 2 ; i.e., we change the sign of the eigenstate with eigenvalue−1.
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the systems bottom-to-top in the circuits.We also reserve the left-most/bottomposition for the system in our
discussions, putting the probe systems to the right/above. True to conventional quantum-circuit practice, single
wires carry quantum information (i.e., systems in quantum states), whereas doublewires carry classical
information (typicallymeasurement outcomes).

We use the notation  D[ ]A to denote the expectation value of a classical randomvariableDA, which need
not correspond to aHermitian observable. TypicallyDA can be thought of as amap frommeasurement
outcomes to numbers, in which case sampling fromDA involves performing saidmeasurement andmapping
the outcome to the appropriate value. For ameasurement defined by a POVM { }Ej (see section 3.3) and
corresponding random-variable values denoted byDAj, the expectation value evaluates to

 å rD = D[ ] [ ] ( )A A ETr . 2.4
j

j j

The implicit dependence on quantum state ρ andmeasurement POVM { }Ej should be clear from context.

3.Measurements and the quantum-circuit depiction

3.1. Indirect andweakmeasurements
The instantaneous directmeasurement of quantum systems, still the staple ofmany textbook discussions of
quantummeasurement, is only a convenient fiction. As discussed in the Introduction, one typicallymakes a
measurement by coupling the systemof interest to an ancillary quantum systemprepared in a known state and
thenmeasuring the ancilla. This is called an indirect or ancilla-coupledmeasurement. For brevity we refer to the
systemof interest as the system. Although the ancillary system goes by a variety of names in the literature, we refer
to such systems here as probes to evoke theway they approach the system to interrogate it and depart to report
theirfindings.When additional clarity is helpful, we use subscripts to identify states with various systems, so
yñ∣ sys and rsys designate system states and fñ∣ pr and spr designate probe states.

Ancilla-coupledmeasurements can be used to effect any generalizedmeasurement, including the direct
measurements of textbook lore. Suppose onewants tomeasure sz on a qubit system. This can be accomplished
by preparing a probe qubit in the state ñ∣e , performing a controlled-NOT (CNOT) gate from the system to the
probe, andfinallymeasuring sz directly on the probe. TheCNOTgate is defined algebraically as

 s sñá Ä + ñá Ä = ñá Ä + ñá Ä≔ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )e e g gCNOT 0 0 1 1 . 3.1x x

Doing nothingwhen the probe is in the excited statemight feel strange, but this convention is chosen to
harmonizewith the quantum-information notation that is shown in the second formof equation (3.1), inwhich
theNOTgate (sx) is applied to the probewhen the system is in the state ñ = ñ∣ ∣g1 ; this is called control on ñ∣1 or,
in this context, control on ñ∣g . Figure 2 depicts in quantum circuits the equivalence between a direct
measurement of sz and the ancilla-coupledmeasurement.

For an arbitrary initial system state

y a bñ ñ + ñ∣ ≔ ∣ ∣ ( )g e , 3.2sys sys sys

the joint state of the system and probe after the interaction is

y a bYñ ñ Ä ñ = ñ + ñ∣ ≔ ∣ ∣ ∣ ∣ ( )e gg eeCNOT . 3.3sys pr

Local sz measurements on the probe are described by the projectors P Ä ñá≔ ∣ ∣( ) g gg
pr and P Ä ñá≔ ∣ ∣( ) e ee

pr

(the superscript indicates projection only on the probe). Thesemeasurements give the following probabilities
and post-measurement system states:

a= áY P Yñ =
P YñáY P

= ñ á( ) ∣ ∣ ∣ ∣
[ ∣ ∣ ]

( )
∣ ∣ ( )( )

( ) ( )

g
g

g gPr ,
Tr

Pr
, 3.4g

g gpr 2 pr
pr pr

sys

Figure 2.Equivalence between a direct (left) and ancilla-coupled (right)measurement of sz . Note that for theCNOTgate in the
ancilla-coupledmeasurement, the application of theNOTgate to the probe is controlled on ñ = ñ∣ ∣g 1 , as shown algebraically in
equation (3.1). The single wires carry systems in quantum states, while the double wires carry classical information. In both the direct
and the ancilla-coupledmeasurement, the double wire emerging from themeasurement apparatus carries the result of the
measurement, either e(0) or g(1). After themeasurement, the system is left in the corresponding state, ñ∣e ( ñ∣0 ) or ñ∣g ( ñ∣1 ); this state is
carried by the systemwire emerging from the right of themeasurement apparatus in the directmeasurement and by the systemwire
proceeding to the right in the ancilla-coupled version.
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b= áY P Yñ =
P YñáY P

= ñ á( ) ∣ ∣ ∣ ∣
[ ∣ ∣ ]

( )
∣ ∣ ( )( )

( ) ( )
e

e
e ePr ,

Tr

Pr
. 3.5e

e epr 2 pr
pr pr

sys

These are the same probabilities and post-measurement system states as for a directmeasurement of sz on the
system. This equivalence comes about because theCNOTgate produces perfect correlation in the standard qubit
basis.

More general interactions between the system and probe do not produce perfect correlation. A specific
example of an imperfectly correlating interaction,

 q q q q- = Ä -( ) ≔ ( ) ( )U i iexp CNOT cos sin CNOT, 3.6CNOT

was presented by Brun [34]; q = 0 gives the identity, i.e., no correlation between system and probe, and
q p= 2 gives (up to the global phase-i)CNOT, i.e., perfect correlation between system and probe. For

q p< <0 2 the probe becomes partially correlated with the system. This kind of partial CNOT can be
constructed because theCNOTgate isHermitian aswell as unitary, and therefore generates unitary
transformations. The joint state of the system/probe after the interaction is

q y q y q b a q a qY ñ ñ Ä ñ = ñ Ä ñ - Yñ = ñ + ñ - ñq
q-∣ ≔ ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )
U e e i e ee ge i ggcos sin cos sin .

3.7

i
CNOT sys pr sys pr

Aprojectivemeasurement on the probe after the interaction gives only partial information about the system
and thus only partially projects the system state. As explained in the Introduction, suchmeasurements have been
calledweak, fuzzy, or gentle. Thesemeasurements should not be equatedwithweak values [68, 69], a derivative
concept utilizingweakmeasurements butwith no additional relation to the continuous-measurement schemes
we consider. The outcome probabilities and post-measurement system states are

a q= áY P Y ñ =
P Y ñáY P

= ñ áq q
q q( ) ∣ ∣ ∣ ∣

[ ∣ ∣ ]
( )

∣ ∣ ( )( )
( ) ( )

g
g

g gPr sin ,
Tr

Pr
, 3.8g

g gpr 2 2 pr
pr pr

sys

b a q c c= áY P Y ñ = +
P Y ñáY P

= ñ áq q
q q( ) ∣ ∣ ∣ ∣ ∣ ∣

[ ∣ ∣ ]
( )

∣ ∣ ( )( )
( ) ( )

e
e

Pr cos ,
Tr

Pr
, 3.9e

e epr 2 2 2 pr
pr pr

sys

where

c
a q b

a q b
ñ =

ñ + ñ

+

q-

∣
∣ ∣

∣ ∣ ∣ ∣
( )

g e ecos

cos
. 3.10

i

sys
sys sys

2 2 2

For q  1, we can expand these results to second order in θ to seemore clearly what is going on in the case of
aweakmeasurement. The outcome e is very likely, occurring with probability a q-( ) ∣ ∣ePr 1 2 2, andwhen
this outcome is observed, the post-measurement state of the system is almost unchanged from the initial state

c a b q b q b qñ - ñ + - - ñ ( ) ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )g i e1 1 . 3.11sys
1

2
2 2

sys
1

2
2 2

sys

In contrast, the outcome g is very unlikely, occurring with probability a q( ) ∣ ∣gPr 2 2, andwhen this outcome is
observed, the system is projected into the state ñ∣g sys, which can be very different from the initial state. This kind
of weakmeasurement can be thought of as usually providing very little information about the system, but
occasionally determining that the system is in the ground state. These unlikely, discontinuous events in system
evolution are often referred to as quantum jumps in the literature [70].

3.2.Quantum-circuit description ofmeasurements
In themost general ancilla-coupled-measurement scheme, the system is initially in a (possiblymixed) state ρ and
the probe begins in the (possiblymixed) stateσ. System and probe interact via an interaction unitaryU and then
the probe ismeasured in the eigenbasis of an observableO.We illustrate and elaborate on this scheme in figure 3.

Because aweakmeasurement extracts partial information and thus only partially projects the systemonto an
observed eigenstate, we can learnmore about the systemby performing repeatedweakmeasurements (contrast
this with a projectivemeasurement, where one gains no new information by immediately repeating the
measurement). Onemethod of extracting all the available information about the system is to repeat aweak
measurementmany times. Such iteratedweakmeasurements are explored inmore detail in section 4.

We introduce a circuit convention in figure 4 thatmakes it easy to depict iteratedmeasurements. The naïve
depiction, figure 4(a), is clumsy and distracts from the repetitive character of the probe interactions. For the
remainder of the paper, we employ a cleaner convention by reserving one probewire (usually the one nearest to
the system) for all interactionswith the system.We then use SWAP gates to bring probes into and out of contact
with the system as necessary. Thus the circuit infigure 4(a) transforms tofigure 4(b). Generally, the SWAP trick
leads to circuit diagrams like figure 4(c). The SWAPs in all cases are purely formal and used only for convenience.
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The SWAP trickworks because our system is distinct from the probes in an important way.We are assuming
that the system is persistent and not directly accessible—i.e., we cannot directlymeasure or swap the state of the
system—while the probes are transient, interactingwith the systemonce and thenflying away to bemeasured. In
figure 4we have included subscripts to individuate the probes, althoughwe often omit these designations since
the circuit wire already contains this information—e.g., in a circuit diagram,we can drop the probe designation
n from sn since the diagram tells uswhich probe this density operator describes.

Under the repetitivemeasurements depicted infigure 4(c), the systemundergoes a conditional dynamics,
where the conditioning is on the results of themeasurements on the probes. Discarding the results of the
measurements on the probe is equivalent to not doing anymeasurements on the probe, and then the system
dynamics are the unconditional open-systemdynamics that come from tracing out the probes after they interact
with the system.

Figure 3.General ancilla-coupledmeasurement. System in initial state ρ and probe in initial stateσ are subjected to an interaction
unitaryU. (a)Probe ismeasured in the eigenbasis of an observableO; (b)equivalently, by including a basis-changing unitaryV in the
circuit, themeasurement ofO is replaced by ameasurement in the eigenbasis of a standard observable ¢O related to the original
observable by = ¢†O V O V ; (c)same as (a), except that the post-measurement state of the probe is discarded, there being no further
use for the probe; (d)same as (b), except that the post-measurement state of the probe is discarded.

Figure 4.Circuit representations of repeatedmeasurements. (a)This straightforward representation quickly becomes unwieldy as
more probes are added to the diagram. (b)The straightforward depiction is cleaned up by using a SWAP gate tomove the probe
destined to interact nextwith the systemonto thewire closest to the system for the interaction and then, after the probe’s interaction,
another SWAP gate tomove it onto thewire just above its initial wire, ready to bemeasured. (c)Use of the SWAP-gate trick allows one
easily to depict the repetitive interaction ofN probes with the system. Readers familiar with circuit diagramsmight find this usage
confusing atfirst, but with a little practice, will come to appreciate both its convenience and itsmanifestly iterative depiction of the
initial probe states, of the probes’ interactions with the system, and of themeasurements on the probes. Indeed, (c)depicts clearly the
essential elements ofMarkovian system evolution: the separate probe states on the left, the separate probe interactions on the bottom
twowires, and the separate probemeasurements on the right.
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The circuit diagram infigure 4(c) can be thought of as depicting probes that successively and separately
scatter off the system and then aremeasured to extract the information picked up from the system in the
scattering event. Indeed, the diagrams highlight the essential assumptions behind theMarkovian system
evolution that comeswith this sort of scattering. Each probe, in its own state, uncorrelatedwith the other probes,
scatters off the system and thenflies away, never to encounter the system again; this happens, for example, when
a vacuumor thermal field scatters off the system and propagates away to infinity. The result isMarkovian
unconditional evolution; to getMarkovian conditional evolution, one requires in addition that the probes be
measured independently.Markovian evolution is usually thought of in the context of continuous-time
evolution, inwhich the interaction unitariesU correspond to repetitiveHamiltonian evolution for infinitesimal
time intervals and thus are necessarily weak interactions that give rise toweak, continuousmeasurements on the
system.Despite the importance of continuous-time evolution and continuousmeasurements, which are the
focus of this paper, the circuit diagram infigure 4(c) allows one to see clearly what is involved inMarkovian
evolution even forfinite-time interaction events: the separate probe states on the left, the separate probe
interactions on the bottom twowires, and the separate probemeasurements on the right. The circuit diagrams
for infinitesimal time interactions are the foundation for theMarkovian input-output theory of quantumoptics,
whichwe consider in section 6.1.

Variousmodifications to the circuit diagramoffigure 4 give non-Markovian evolution. Onemodification is
to initialize the probes in a correlated state, either via classical correlations or via the quantum correlations of
entanglement. A second kind ofmodification, depicted in figure 5, is to allow the system to interact with each
probemultiple times, by having a probe return and interact yet again after other probes have interactedwith the
system, as infigure 5(a), or to have a timewindow inwhichmultiple probes interact with the system, as in
figure 5(b). Thefirst of these is the general situationwhen afinite environment interacts with the system;
environment ‘modes’ acting as probes never exit cleanly, so amode can interact with the systemmore than once.
We note that themethods developed in [54, 55] allow probes to overlap in the same timewindow and thusmight
provide an avenue to describing non-Markovian dynamics. Finally, conditional evolution can be non-
Markovianwhen onemakes jointmeasurements, instead of independentmeasurements, on the probes after
they depart from the system. This occurs whenmodeling finite detector bandwidth as discussed in [66,
section 4.8.4].

Figure 5.Two different scenarios that produce non-Markovian systemdynamics by changing the probe-system interactions away
from theMarkovian pattern infigure 4(c): (a)Afinite environment (here consisting of three probes) forces the probes to return and
interact repeatedly with the system. (b)Successive probes simultaneously interact with the system,making it impossible to separate
the environment into disjointmodes that individually interact with the system.
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3.3. Conditional evolution andKraus operators
Suppose that, as is depicted infigure 4(c), we cause the system, initially in pure state r y y= ñá∣ ∣, to interact
sequentially withN probes, initially in the product state s sÄ Ä N1 , wherewe assume, for themoment, that the
initial probe states are pure, i.e., s f f= ñ á∣ ∣n n . The interaction of the nth probewith the system is described by
the unitary operator ( )U n , and after the interaction, wemeasure the observableO on each probe, obtaining
outcomes ¼o o, ,j jN1

.Wewant to calculate probabilities for obtaining different sequences ofmeasurement
outcomes, as well as the conditional quantum state of the system after observing a particular sequence of
outcomes. These probabilities can be derived in a variety of ways, some ofwhichwere explored in [54, 55],
producing the following expressions [56]: the probability for the outcome sequence is

y y y¼ = á ñ( ∣ ) ˜ ∣ ˜ ( )o oPr , , , 3.12j j N NN1

where

y y f fñ = á Ä Äá ñ Ä ñ Ä Ä ñ  ∣ ˜ ∣ ∣ ∣ ∣ ∣ ( )( ) ( )o o U U 3.13N j j N
N

N1
1

1N1

is the unnormalized system state at the end of the entire process and

y y y yñ = ñ á ñ∣ ∣ ˜ ˜ ∣ ˜ ( )3.14N N N N

is the corresponding normalized state after the process. As the number of probes increases, these expressions
become pointlessly unwieldy, since in theMarkovian situation offigure 4(c)we should be able to deal with the
probes one at a time. Themost efficient way towrite the results is to use the system-only formalisms of positive-
operator-valuedmeasures (POVMs) and quantum operations, whichwere historically introduced as effects and
operations.

The ingredient common to both POVMs and quantumoperations that gives us this system-only description
is theKraus operator, whichwe define in the standardway using partial inner products:

fá ñ≔ ∣ ∣ ( )K o U . 3.15j j

As usual, these Kraus operators give rise to POVMelements,

≔ ( )†E K K , 3.16j j j

and the POVMelements resolve the identity,

å = ( )E . 3.17
j

j

The POVMelements specify the quantum statistics of a generalizedmeasurement on the system. The
conditional (unnormalized) state of the quantum system after observing a single outcome oj is

r r f f f r f= á Ä ñá ñ = á ñ á ñ˜ ∣ ( ∣ ∣) ∣ ∣ ∣ ∣ ∣ ( )† †o U U o o U U o 3.18j j j j

and is thus described by a quantumoperation constructed from the single Kraus operatorKj,

r r=˜ ( )†K K . 3.19j j

One can easily see that the unnormalized system state(3.13) after observing a particular outcome
sequenceis

y yñ = ñ∣ ˜ ∣ ( )K K . 3.20N j jN 1

Writing this in terms of the system’s initial density operator—allowing us to accommodatemixed initial system
states—we get the unnormalized final system state

r r=  ˜ ( )† †K K K K , 3.21N j j j jN N1 1

the probability of the outcome sequence

r r r¼ = =  ( ∣ ) [ ˜ ] [ ] ( )† †o o K K K KPr , , Tr Tr , 3.22j j N j j j jN N N1 1 1

and the normalized final state of the system,

r
r

r
=

 

 [ ]
( )

† †

† †

K K K K

K K K KTr
. 3.23N

j j j j

j j j j

N N

N N

1 1

1 1

TheMarkov nature of themodelmanifests itself algebraically as the decomposition of the collective Kraus
operator for allNmeasurements into a product of separate Kraus operators for each probe. Indeed, the Kraus
operators for the nth probe, f= á ñ∣ ∣( )K o Uj j

n
nn n
, neatly display the elements ofMarkovian evolution: each probe

has its own initial state, its own interactionwith the system, and its ownmeasurement. As a consequence, the
results for a sequence ofmeasurements can be dealt with one probe at a time; in particular, the system state after
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+n 1measurements is

r
r

r

r
r

r

r

r

=
¼

=
¼

¼

=
¼

+
+ +

+

+ +
+

+ +

+

 

( ∣ )
( ∣ )

( ∣ )

( ∣ )
( )

† †

†

†

K K K K

o o

K K
o o

o o

K K

o o o

Pr , ,

Pr , ,

Pr , ,

Pr , , ,
; 3.24

n

j j j j

j j

j n j
j j

j j

j n j

j j j

1
n n

n

n n

n

n

n n

n n

1 1 1 1

1 1

1 1

1

1 1

1 1

1 1

thefinal denominator here is the conditional probability for the +( )n 1 th outcome, given the previous
outcomes, which can bewritten as

r r¼ =
+ +

( ∣ ) [ ] ( )o o o EPr , , , Tr . 3.25j j j n jn n n1 1 1

Notice that for consistency, we should denote the initial state as r r= 0.
Quantum trajectories are usually formulated as difference equations,

r r rD -+≔ ( )∣ ∣ , 3.26n j n j n1

or, in the continuous-time limit, as the corresponding differential equation.Herewe have explicitly denoted the
+( )n 1 thmeasurement outcome by j and left all priormeasurement results implicit in the density operator rn.

The object of this paper is to derive equation (3.26) for different choices of the elements that go into theKraus
operator(3.15), i.e., themeasurement outcomes á ∣oj , the interaction unitaryU, and the initial state fñ∣ .

Afinal point that we need later on is how tofind theKraus operators when the probes begin in amixed state.
For amixed probe initial state,

ås l= ñá∣ ∣ ( )k k , 3.27
k

k

the unnormalized post-measurement system state(3.18) becomes

å

å

r r s

l r l

r

= á Ä ñ

= á ñ á ñ

=

˜ ∣ ∣

∣ ∣ ∣ ∣

( )

†

†

†

o U U o

o U k k U o

K K , 3.28

j j

k
k j j k

k
jk jk

where theKraus operators, defined by

l á ñ≔ ∣ ∣ ( )K o U k , 3.29jk k j

act together tomake up a quantumoperation.
Armedwith this language of Kraus operators, we can put forward alternative descriptions of projective and

weakmeasurements. A projectivemeasurement is onewhose Kraus operators are one-dimensional projectors,
andweakness (or gentleness or fuzziness) ismeasured by the extent towhich this is not the case, by havingKraus
operators that are either sub-unitymultiples of one-dimensional projectors or operators higher than rank one.
Typically, what ismeant by aweakmeasurement is ameasurement whoseKraus operators aremostly ‘close’ to
somemultiple of the identity operator, corresponding to outcomes that do not disturb the systemmuch,
although theremight also be somewhich are very ‘small,’ corresponding to outcomes thatmight significantly
disturb the system, but that occur infrequently.

3.4.Open-systemdynamics
Wefinally note that every conditional dynamics gives rise to an unconditional, open-systemdynamics that
corresponds to throwing away information aboutmeasurement outcomes. In theMarkovian scenarios we are
considering, throwing away the probe information at timestep +n 1gives evolution described by a quantum
operation:

 år r[ ] ≔ ( )†K K , 3.30
j

j j

r r=+ [ ] ( ). 3.31n n1

Notice that for amixed-state probe, theKraus operatorsKjk of equation (3.29) go together in equation (3.28) to
make an outcome-dependent quantumoperator r rå[ ] ≔ †K Kj k jk jk that can be thought of as coming from
throwing away the information about the probe’s initial state.

The differential equation corresponding to the evolution(3.31) is known as themaster equation. As is well
known [71], the Kraus decomposition(3.30) for the quantumoperation is not unique. Different Kraus
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decompositions correspond to performing differentmeasurements on the probes and result in different system
dynamics. In the trajectory literature, these alternative stochastic dynamics are known byCarmichael’s
terminology of unravelings [58]. The relationship of themaster equation to equation (3.26) is

år r r r rD - = D+ +≔ ( ∣ ) [ ] ( )∣ ∣jPr . 3.32n
j

n n j n n j1 1

4. Continuousmeasurementswith probefields

Wehave nowpresented circuit-model and algebraic representations of the conditional evolution of a quantum
system subjected to a sequence of weakmeasurements. In this sectionwe formally describe sequences of weak
interactions between a system and a probefield and discuss how the approximationsmade in quantum input-
output theory allow us to use the circuit offigure 4(c) to describe the quantum trajectories arising from
continuousmeasurement of the probe field. The probefield—and the probe qubits we use in lieu of afield—are
often referred to as a reservoir or a bath.

We begin bywriting the combinedHamiltonian for the system coupled to the field as

= + + ( )H H H H . 4.1sys field interaction

For simplicity, we assume that the interactionHamiltonian is linear in the one-dimensional probe fielda,

g= Ä - Ä( ) ( )† †H i c a c a , 4.2interaction

where c is a systemoperator. Representative examples are coupling to the angularmomentumof a collection of
atoms yielding = -c J , coupling to the position of an oscillator yielding c=a, and nonlinear coupling to an
optomechanical oscillator yielding an effective c=x after several approximations [72].Writing the interaction
Hamiltonian in this formuses the rotating-wave approximation (RWA) to keep only the energy-conserving
terms in the interaction. Typical interaction terms involve the product of aHermitian systemoperator and a
Hermitianfield operator.Writing theseHermitian operators as sums of positive- and negative-frequency parts
leads to four terms in the interactionHamiltonian, only two ofwhich conserve energy when averaged over times
much longer than the system’s characteristic dynamical time. The RWA retains these two energy-conserving,
co-rotating terms and discards the two counter-rotating terms, leaving the interactionHamiltonian(4.2).
Making the RWA requires averaging over timesmuch longer than the system’s dynamical time.We saymore
about the RWAbelow.

It is useful towork in the interaction picture, where the free time evolution of the system and field (generated
by +≔H H H0 sys field) is transformed into the operators, leaving a time-dependent interactionHamiltonian,

g= Ä - Ä-( ) ≔ [ ( ) ( ) ( ) ( )] ( )† †H t e H e i c t a t c t a t . 4.3I
iH t iH t

interaction
0 0

In the interaction picture, the systemoperator c acquires a free time dependence; we assume now that the system
has a single transition (characteristic) frequencyΩ, so that = - W( )c t c e i t . Thefield operators also acquire a time
dependence; each frequencymode of the field oscillates at its angular frequencyω, i.e., as w-e i t . Indeed, the
positive-frequency part of the field appearing in equations (4.2) and(4.3) is constructed from the frequency-
mode annihilation operators w( )a and is given by

ò
w
p

w= w
¥

-( ) ( ) ( )a t
d

a e
2

. 4.4i t

0

Thefield in equation (4.4) is written in photon-number units, bywhichwemean it is the Fourier transformof
the frequency-domain annihilation operators, which obey the canonical commutation relations

w w pd w w¢ = - ¢[ ( ) ( )] ( ) ( )†a a, 2 . 4.5

Writing the field in these units omits frequency-dependent factors in the Fourier transform, and this omission is
called the quasimonochromatic approximation, which assumes that the coupling of thefield to the system isweak
enough, i.e., g W , that onlyfield frequencies near the system transition frequencyΩ, i.e., thosewithin a few
linewidths γ ofΩ, are important. This allows us to choose the averaging time required by theRWAmuch longer
than the system’s characteristic time W1 , butmuch shorter than the inverse linewidth g1 ; i.e., the averaging
time is long enough to average away the counter-rotating, energy-nonconserving parts of the interaction
Hamiltonian, but short enough that notmuch happens to the systemduring the averaging time.

It is convenient to introduce a new field operator,


 ò p

= = W +W

-W

¥
-( ) ( ) ( ) ( )b t e a t

d
a e

2
, 4.6i t i t

which has its zero of frequencies shifted to the transition frequencyΩ.Within the quasimonochromatic
approximation, we can extend the integral over ò to-¥; introducing phantommodes at negative w = W +
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does notmake any difference because they do not participate in the narrow-bandwidth coupling to the system.
This gives us


 ò p

= W +
-¥

¥
-( ) ( ) ( )b t

d
a e

2
. 4.7i t

The advantage of extending the integral to-¥ is that the field operators b(t) become instantaneous temporal
annihilation operators, obeying the canonical commutation relations,

d¢ = - ¢[ ( ) ( )] ( ) ( )†b t b t t t, . 4.8

These operators are often called ‘white-noise operators’ because of their delta commutator, which permits them
to be delta-correlated in time like classical white noise. The interactionHamiltonian now assumes the following
continuous-time form:

g= Ä - Ä( ) [ ( ) ( )] ( )† †H t i c b t c b t . 4.9I

The essence of the quasimonochromatic approximation is the use of the photon-units field operator(4.7). The
notion of creating instantaneous photons at the characteristic frequencyΩ clearly requires a bit of cognitive
dissonance: it is valid only if ‘instantaneous’ is understood tomean temporal windows that are broad compared
to W1 , corresponding to a narrow bandwidth of frequencies nearΩ.

The discrete interactions infigure 4 arise from the continuous-time interactionHamiltonian(4.9)bydividing
thefield into probe segments, starting at times = D = -¥ ¼ ¥t n t n, , ,n , all of duration - D+ ≔t t tn n1 .We
assume,first, thatD W-t 1 so thatwithin each segmentDt , the interactionwith the probefield is averaged over
many characteristic times of the system, as required by theRWA, and, second, that gD -t 1 so that the probe/
system interaction over the timeDt isweak. Insteadof using the frequencymodes W +( )a or the instantaneous
temporalmodes b(t), wenow resolve thefield into discrete temporalmodes bn k, as

å å=
D

Q - p

=-¥

¥

=-¥

¥
- D( ) ( ) ( )b t

t
b t t e

1
, 4.10

n k
n k n

i kt t
,

2

whereQ( )u is the step function that is equal to 1 during the interval < < Du t0 and is 0 otherwise. The discrete
temporalmodes are given by


 





ò

ò p
p p

p

D

= D W + - -
D

+ D -
D -

p D

-¥

¥
-

+

⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

≔ ( )

( ) ( ) ( )

b
t

dt e b t

t
d

a i
k

t

t t t k

t k

1

2
exp

2

2

sin 2 2

2
. 4.11

n k
t

t
i kt t

n n

,
2

1

n

n 1

Thesemodes obey discrete canonical commutation relations,

d d=[ ] ( )†b b, ; 4.12n k m l nm kl, ,

this is the discrete-time analogue of continuous-timewhite noise of equation (4.8).We now recall that the
interaction is weak enough, i.e., g W , that only frequencies within a few γ ofΩneed to be considered; given
our assumption that gD t1 , this allows us to neglect all the discrete temporalmodeswith ¹k 0, reducing
the probefield to

å=
D

Q -
=-¥

¥

( ) ( ) ( )b t
t

b t t
1

, 4.13
n

n n

where

ò=
D

+
≔ ( ) ( )b b

t
dt b t

1
. 4.14n n

t

t

,0
n

n 1

The neglect of all the sidebandmodes is illustrated schematically infigure 6. Plugging this expression for the
probefield into the equation (4.9) puts the interactionHamiltonian in itsfinal form,

å= Q -
=-¥

¥

( ) ( ) ( )( )H t H t t , 4.15I
n

I
n

n

where

g
g g

D
Ä - Ä = Ä

D
- Ä

D

⎛
⎝⎜

⎞
⎠⎟≔ ( ) ( )( ) † †

†
†H i

t
c b c b i c

b

t
c

b

t
4.16I

n
n n

n n

is the interactionHamiltonian during the nth probe segment. It is thisHamiltonian that is used to generate the
discrete unitaries infigure 4.
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Before exploring the interaction unitary, however, it is good to pause to review, expand, and formalize the
assumptions necessary to get to the discreteHamiltonian(4.16) that applies to each time segment or,more
generally, to get to theMarkovian quantum circuit offigure 4. The restriction of the system-probe interaction to
be a sequence of joint unitaries between the system and a single probe segment is often referred to as the first
Markov approximation. This approximation is validwhen the spatial extentDx of the system is small with
respect to the spatial extent Dc t of the discretized probes. Formany typical scenarios (e.g., atomic systems), the
time intervalDt can bemade quite small, often even smaller than the characteristic evolution time W-1, before
the spatial extent of the probes becomes comparable to the spatial extent of the system,whichwould force us to
use a non-Markovian description likefigure 5(b). The reasonwe did not encounter this assumption in the
analysis above is that it is already incorporated in our starting point, the interactionHamiltonian(4.2). A typical
interactionHamiltonian involves a spatial integral over the extent of the system. Inwriting the interaction
Hamiltonian(4.2), we have already assumed that the system is small enough that the spatial integral can be
replaced by a point interaction.

The initial product state of the probes is often referred to as the secondMarkov approximation. This
approximation is validwhen the correlation time tc in the bath ismuch shorter than the durationDt of the
discrete probe segments. This is often an excellent approximation, as baths with even very low temperatures
have very small correlation times. For example, the thermal correlation time t p=  ·kT KT2 10 psc given
by equation (3.3.20) in [73] is approximately 10ns for a temperature of 1 mK. On the other hand, the vacuum
correlation time t pW 1 2c at the characteristic frequencymeans that if vacuumnoise dominates, then the
secondMarkov approximation requires that the probe segments bemuch longer than the system’s dynamical
time, i.e.,D Wt 1 . For a treatment of the nonzero correlation time of the vacuum in an exactly solvable
model, see [74].

The productmeasurements at the output of the circuit infigure 4(c) do not affect open-systemdynamics, for
which the bath is notmonitored, but they do enter into aMarkovian description of dynamics conditioned on
measurement of the bath. The productmeasurements are a good approximationwhen the bandwidth of the
detectors is sufficiently wide to give temporal resolutionmuch finer than the duration of the probe segments we
used to discretize the bath.

The remaining pair of closely related approximations, as we discussed previously, are the RWA,which has to
dowith simplifying the formof the interactionHamiltonian, and the quasimonochromatic approximation,
which has to dowith simplifying the description of the field so that eachDt probe segment has only one relevant
probemode. The three important parameters in these two approximations are the characteristic system
frequencyΩ, the linewidth γ, and the duration of the time segments,Dt , and the approximations require
that g D W t1 .

The approximations wemake are summarized below:

D D ( )x c t First Markov, 4.17

t D ( )t Second Markov, 4.18c

gW D- -  ( )t RWA and quasimonochromatic. 4.191 1

Wenote that it is possible tomodel systemswith several different, well-separated transition frequencies by
introducing separate probefields for each transition frequency, as long as it is possible to choose discrete probe

Figure 6. (a)On-resonance and first two sideband discrete temporalmodes, represented in the interaction picture, where the on-
resonancemode has frequency w = W0 ( = 0) and the first two sidebandmodes have frequencies w p= W  D t2
( p=  Dt2 ). (b)Illustration of the case where the interaction is sufficiently weak that thefirst two sideband discretemodes—and,
hence, all the other sidebands—are sufficiently off resonance to ignore; it is thus also true that sensitivity to low frequencies is small
enough that we can introduce the phantomnegative-frequency fieldmodes of equation (4.7), with frequencies w = W + < 0,
without altering the physics. This diagram illustrates the essential assumptions for the RWAand the quasimonochromatic
approximation: g D W t1 .
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time segments in such away that the above approximations are valid for allfields introduced. The several probe
fields can actually be parts of a single probefield, with each part consisting of the probe frequencies that are close
to resonancewith a particular transition frequency.

The approximations nowwell in hand, we return to theHamiltonian(4.16) for the nth probe segment. The
associated interaction unitary between the system and the nth probe segment is given by

  t t t= = Ä + D Ä - Ä + D Ä - Ä + D- D ( ) ( ) ( ) ( )( ) † † † †( )
U e c b c b c b c b

1

2
, 4.20I

n iH t
n n n n

2 3 2I
n

wherewe define a dimensionless time interval,

t gD D ≔ ( )t 1, 4.21

suitable for series expansions.We only need to expand the unitary to second order becausewe are only interested
in terms up to order tD for writing first-order differential equations. A comprehensive and related presentation
of the issues discussed above can be found in the recent paper of Fischer et al [75].

Notice that we can account for an external Hamiltonian Hext applied to the system, provided it changes
slowly on the characteristic dynamical time scale W1 of the system and leads to slow evolution of the systemon
the characteristic time scale (if such aHamiltonian is not slow, it should be included in the free system
Hamiltonian Hsys). In the interaction picture, the externalHamiltonian acquires a time dependence and
becomes part of the interactionHamiltonian; since it is essentially constant in each time segment, its effect in
each time segment can be captured by expanding its effect to linear order inDt . It is easy to see that the
interaction unitary(4.20) is then supplemented by an additional term- Di t H ;ext whenwe convert to thefinal
differential equation, this term introduces the standard commutator r- [ ]i dt H ,ext for an external
Hamiltonian.

5.Quantum trajectories for vacuumfield and qubit probes

Weare nowprepared to discuss the quantum trajectories arising from the continuousmeasurement of a probe
field coupled to a system as described in the previous section. In this context we often drop the explicit reference
towhich probe segmentwe are dealingwith, since theMarkovicity offigure 4(c)meanswe can consider each
probe segment separately. Unconditional open-system evolution follows from averaging over the quantum
trajectories or, equivalently, tracing out the probes.

Probe fields initially in the vacuum state are our concern in this section. Because the interaction between
individual probes and the system isweak, the one-photon amplitude of the post-interaction probe segment is
 tD( ), the two-photon amplitude is tD( ), and so on. Since these amplitudes are squared in probability
calculations, the probability of detecting a probewithmore than one photon is tD( )2 and can be ignored. This
suggests that it is sufficient tomodel the probe segments with qubits, with ñ∣g corresponding to the vacuum state
of the field and ñ∣e corresponding to the single-photon state.We replace the discrete-field-mode annihilation

operator bn in equation (4.20)with the qubit lowering operator s- and †bn with s+:

  t s s t s s= Ä + D Ä - Ä + D Ä - Ä+ - + -( ) ( ) ( )† †U c c c c a
1

2
5.1I

2

  t s s t= Ä + D Ä - Ä - D Ä ñá + Ä ñá+ -( ) ( ∣ ∣ ∣ ∣) ( )† † †c c c c e e c c g g b
1

2
. 5.1

With this replacement, the neglect of two-photon transitions in the probe-field segments ismade exact by the
fact that s s= =+ - 0;2 2 these squared terms thus do not appear in equation (5.1b).

In sections 5.1–5.4we establish the correspondence between this qubitmodel and vacuumSMEs, where
vacuum refers to the state of the probefield. In particular, we present qubit analogues of three typical
measurements performed on probe fields: photon counting, homodynemeasurement, and heterodyne
measurement.

We transcend the vacuumprobe fields in section 6 toGaussian probe fields andfind that formulating a qubit
model requires additional tricks beyond just noting thatweak interactionswith the probe do not lead to
significant two-photon transitions. Nevertheless, we are able tofind qubitmodels that yield all the essential
features of these Gaussian stochastic evolutions.

While the qubitmodel we develop ismeant to capture the behavior of a ‘true’field-theoreticmodel, it is
important to note that there are scenarios where qubits are the natural description. For example, inHaroche-
style experiments [76] a cavity interacts with a beamof atoms, accurately described as a sequence offinite-
dimensional quantumprobes. Such scenarios have been analyzed for their non-Markovian behavior [77],
section 9.2, and similarmodels are increasingly studied in the literatures of thermodynamics [78, 79] and
collisionalmodels [80–82].
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5.1. Z basismeasurement: Photon counting or direct detection
As afirst example, we consider performing photon-countingmeasurements on the probe field after its
interactionwith the system.We calculate the quantum trajectory byfirst constructing theKraus operators given
by equation (3.15). For probes initially in the vacuum state we have fñ = ñ∣ ∣g , and our interaction unitary is
given by equations (5.1).What remains is to identify themeasurement outcomes á ∣oj . The qubit version of the

number operator †b b is s s s= ñá = ++ - ∣ ∣ ( )e e z
1

2
.Measuring this observable, as depicted infigure 7, is

equivalent tomeasuring sz . Themeasurement outcomes are then á ∣g and á ∣e and give theKraus operators

 t= á ñ = - D∣ ∣ ( )†K g U g c c a, 5.2g I
1

2

t= á ñ = D∣ ∣ ( )K e U g c b. 5.2e I

The corresponding POVMelements (to linear order in tD ) are

 t= = - D ( )† †E K K c c a, 5.3g g g

t= = D ( )† †E K K c c b, 5.3e e e

which trivially satisfy + =E Eg e .We call the Kraus operators(5.2) the photon-counting Kraus operators. These
operators are identical to those derived for photon countingwith continuous fieldmodes [66, equations (4.5)
and (4.7)], as we expected from the vanishingmulti-photon probability discussed earlier.

To calculate a quantum trajectory we need to describe the evolution of the system conditioned on the
outcomes of repeatedmeasurements of this kind. The state of the system aftermaking ameasurement and
getting the result g during the +( )n 1 th time interval, i.e., between tn and +tn 1, is

r
r

r

r t r r

t r
=

- D +

- D+ ≔
[ ]

( )

[ ]
( )∣

† † †

†

K K

E

c c c c

c cTr 1 Tr
. 5.4n g

g n g

n g

n n n

n
1

1

2

The subscript +n 1on r + ∣n g1 indicates, as in equation (3.24), that this is the state at the end of this probe
segment, after themeasurement; the subscript g indicates that this is the state conditioned on themeasurement
outcome g. The state r +n 1 is conditioned on all previousmeasurement outcomes aswell, but we omit all of that
conditioning, letting it be implicit in rn. Expanding the denominator tofirst order in tD using the standard
expansion t t t+ D = - D + D-( ) ( )x x1 11 2 allows us to calculate the difference equation (3.26)when the
measurement result is g:

 r r r t r r r r t t rD - = - D + - + D = - D+≔ ( [ ]) ( ) [ ] ( )∣ ∣
† † † †c c c c c c c c2 Tr , 5.5n g n g n n n n n n1

1

2
2 1

2

wherewe employ the shorthand

 r r r r r+ - +[ ] ≔ [ ( )] ( )† †X X X X XTr . 5.6

Repeating the analysis for the case when themeasurement result is e gives

r
r
r

r
r

=+ ≔
[ ] [ ]

( )∣

† †

†
K K

E

c c

c cTr Tr
. 5.7n e

e n e

n e

n

n
1

The difference between the pre- and post-measurement system states when themeasurement result is e is thus

r r r
r
r

r rD - = - =+≔
[ ]

[ ] ( )∣ ∣

†

†
c c

c c
c

Tr
, 5.8n e n e n

n

n
n n1

wherewe define

 r
r
r

r-[ ] ≔
[ ]

( )
†

†X
X X

X XTr
. 5.9

Having separate equations for the twomeasurement outcomes is not at all convenient. Fortunately, we can
combine the equations by introducing a randomvariableDN that represents the outcome of themeasurement:

Figure 7.Circuit depicting the system interactingwith a vacuumprobe (probe initially in the ground state)which is subsequently
subjected tomeasurement of the qubit number operator s s+ -, the qubit analogue of a photon-countingmeasurement.The eigenvectors

of s s s= ñá = ++ - ∣ ∣ ( )e e z
1

2
are identical to those of sz , thus allowing us to think instead of ameasurement of the Pauli observable sz .
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D   ( )N g e: 0, 1. 5.10

Since this randomvariable is a bit (i.e., a Bernoulli randomvariable) its statistics are completely specified by its
mean:

 r r t rD = + = D[ ] · [ ] · [ ] [ ] ( )†N E E c c0 Tr 1 Tr Tr . 5.11g e

Wenow combine the difference equations into a single stochastic equation using the randomvariableDN :

 

r r r

r
r

r t r r r r

r t r

D -

= D - - - D D + -

= D - - D D

D + D

⎛
⎝⎜

⎞
⎠⎟

≔

[ ]
( ) ( [ ])

[ ] ( ) [ ] ( )

∣ ∣

†

†
† † †

†

N
c c

c c
N c c c c c c

N c N c c

Tr
1 2 Tr

1 . 5.12

n N n N n

n

n
n n n n n

n n

1

1

2

1

2

It quickly becomes unnecessarily tedious to keep timestep indices around explicitly, since everything in our
equations now refers to the same timestep, sowe drop those indices now.Discarding tD DN , since it is second
order in tD (see equation (5.11) and [66, Chap.4]), we simplify equation (5.12) to

  

r
r
r

r t r r r r

t r r

D = D - - D + -

= D + D

D

⎛
⎝⎜

⎞
⎠⎟[ ]

( [ ])

[ ] [ ] ( )

†

†
† † †N

c c

c c
c c c c c c

c c

Tr
2 Tr

, 5.13

N

D

1

2

wherewe introduce the standard diffusion superoperator,

 r r r r- +[ ] ≔ ( ) ( )† † †X X X X X X X , 5.141

2

and the photon-counting innovation,

 D D - D≔ [ ] ( )N N , 5.15D

which is the difference between themeasurement result and themean result (i.e., it can be thought of as what is
learned from themeasurement). The subscriptDhere plays off the fact that photon counting is often called direct
detection and is used in place ofN becauseNhas toomany other uses in this paper.

By taking the limit t gD  dt we obtain a stochastic differential equation,

  

r
r
r

r g r r r r

g r r

= - - + -

= +

⎛
⎝⎜

⎞
⎠⎟[ ]

( [ ])

[ ] [ ] ( )

†

†
† † †d dN

c c

c c
dt c c c c c c

dt c d c

Tr
2 Tr

, 5.16

D

D

1

2

where dN is a bit-valued randomprocess, termed a point process, withmean  g r=[ ] [ ]†dN dt c cTr and the
innovation is given by  = - [ ]d dN dND . This equation is called the vacuum stochasticmaster equation
(SME) for photon counting; i.e., it is the stochastic differential equation that describes the conditional evolution
of a system that interacts with vacuumprobes that are subjected to photon-countingmeasurements.

Equation (5.16) has no explicit system-Hamiltonian term. Although this differs fromother presentations
our readersmight be familiar with, it ismerely an aesthetic distinction. Recall from the discussion at the end of
section 4 thatwell-behaved systemHamiltonians can be introduced by including an additional commutator
term in our differential equations. In this case, themodification yields

  r r g r r= - + +[ ] [ ] [ ] ( )d i dt H dt c d c, . 5.17D Dext

It is important to stress that in practice, for numerical integration of these equations, one uses the difference
equation (5.13), not the differential equation (5.16); i.e., what one uses in practice is the difference equation that
corresponds to the discrete-time quantum circuit in figure 4(c). One assigns to the system a prior state r0 that
combineswith the initial probe states tomake an initial product state on the full system/probe arrangement.
This prior state describes the system at themoment coupling to the probes is turned on andmeasurements
begin. Each time a newmeasurement result is sampled, equation (5.13) is used to update the description of the
system. If we describe our systemby rn after collecting n samples fromourmeasurement device, observingDN
for sample +n 1 leads to the updated state r r r= + D+ Dn n N1 .

Another application of the difference equation is state/parameter inference. In the case of state inference,
one has uncertainty regardingwhat initial state r0 to assign to the system.General choices for r0 will be
incorrect, invalidating some of the properties described above. In particular, the innovationwill deviate from a
zero-mean random variable, and these deviations observed for a variety of guesses for r0 will yield likelihood
ratios that can be used to estimate the state, as was done in [33]. One can also keep track of the trace of the
unnormalized state(3.19), which encodes the relative likelihood of the trajectory given the evolution
parameters, allowing one to judge different parameter values against one another, as was implemented in [28].
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The differential equation that describes the unconditional evolution corresponding to equation (5.16) is
called themaster equation. To obtain themaster equation, we simply average overmeasurement results in
equation (5.16). The only term that depends on the results is d D, and itsmean is zero, so themaster equation is

r r g r= =[ ] [ ] ( )d d dt c . 5.18D

Just as was the case for the SME(5.16), equation (5.18) has no explicit system-Hamiltonian term. The same
reasoning that allowed us to add such a term and arrive at equation (5.17) allows us to add the same term to
equation (5.18):

r r r g r= = - +[ ] [ ] [ ] ( )d d i dt H dt c, . 5.19D ext

For the remainder of our presentation, such system-Hamiltonian terms are generally left implicit.

5.2. X basismeasurement: Homodyne detection
Wecan produce, as in Brun’smodel [34], a different system evolution simply bymeasuring the probes in a
different basis. To be concrete, let us considermeasuring the x-quadrature of the field, +†b b. In the qubit-
probe approach, thismeansmeasuring s s s+ =+ - x as shown in figure 8.

Thismeasurement projects onto the eigenstates

f ñ ñ  ñ∣ ≔ (∣ ∣ ) ( )g e 2 5.20

of sx. TheKraus operators are linear combinations of the photon-countingKraus operators,

f t t= á ñ =  =  D - D  ( )∣ ∣ ( ) ( )†K U g K K c c c
1

2

1

2
, 5.21I g e

1

2

and the corresponding POVMelements (to linear order in tD ) are

 t= =  D +   ( ( )) ( )† †E K K c c
1

2
, 5.22

which clearly satisfy + =+ -E E .Wewrite the difference equation as before, keeping terms up to order tD ,



 

r
r
r

r
r t r r t r

t r
r

t t r r t r

D - =
 D + + D

 D +
-

=  D - D + + D


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

( )
≔
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( ) [ ]

[ ( )])

[( ) ] [ ] [ ] ( )

† †

†

†

K K

E

c c c

c c

c c c c

Tr 1 Tr

Tr , 5.23

wherewe have again expanded the denominator using a standard series,


t

t t t
+ D

= - D + D + D( ) ( )
x

x x
1

1
1 . 5.242 3 2

The dependence on themeasurement result±is reduced now to the coefficient t D in equation (5.23).
We rewrite this stochastic coefficient as a randomvariable,DR, again dependent on themeasurement outcome
such that tD   DR : . The average of this randomvariable to order tD is

 t r t r t rD = D - D = D ++ -[ ] [ ] [ ] [( ) ] ( )†R E E c cTr Tr Tr . 5.25

This is exactly the term subtracted fromDR in the coefficient of r[ ]c in equation (5.23); thus, defining the
homodyne version of the innovation as

 D D - D≔ [ ] ( )R R , 5.26H

we bring the homodyne difference equation into the form,

  r t r rD = D + D [ ] [ ] ( )c c , 5.27H

which is the difference equation one uses for numerical integration in the presence of homodynemeasurements.

Figure 8.Circuit depicting the system interactingwith a vacuumprobe (probe initially in the ground state)which is subsequently
subjected tomeasurement of the qubit quadrature operator s s s+ =+ - x , the qubit analogue of a homodynemeasurement. Just as
for photon counting, the qubitmeasurement corresponds to a Pauli observable.
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Another simple calculation shows the secondmoment ofDR to be

 t r t r tD = D + D = D+ -[( ) ] [ ] [ ] ( )R E ETr Tr . 5.282

By definition the innovation has zeromean, and its secondmoment is the variance ofDR,

   tD = D - D = D[( ) ] [( ) ] ( [ ]) ( )R R , 5.29H
2 2 2

where againwework to linear order in tD . It is now trivial towrite the continuous-time stochastic differential
equation that goes with the difference equation (5.27):

 r g r g r= +[ ] [ ] ( )d dt c dW c . 5.30H

In the continuous limit, the innovation D H becomes g dW , where dW is theWeiner process, satisfying
 =[ ]dW 0 and  =[ ]dW dt2 .

Changing themeasurement performed on the probes does not alter the unconditional evolution of the
system, so averaging over the homodynemeasurement results gives again themaster equation (5.18):

 r r g r r= = =[ ] [ ] [ ] ( )d d dt c d . 5.31H D

The results so far in this subsection are for homodyne detection of the probe quadrature component
s s s= + =+ -X x, i.e., measurement in the basis(5.20). It is easy to generalize tomeasurement of an arbitrary

field quadrature +j j- †e b e bi i , which for a qubit probe becomes ameasurement of the spin component

j s s s j s j+ = +j j
-

-
+( ) ≔ ( )X e e cos sin . 5.32i i

x y

Thismeansmeasurement in the probe basis [eigenstates of j( )X ],

f j ñ ñ  ñj


-( )∣ ( ) ≔ ∣ ∣ ( )g e e
1

2
, 5.33i

wherewe can alsowrite

f j j f j f

f j j f j f
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The resultingKraus operators are



j f j

t t

= á ñ
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with corresponding POVMelements

j j j t= =  D +j j
  

-( )( ) ( ) ( ) ( ) ( )† †E K K e c e c
1

2
. 5.36i i

We see that the results formeasuringX can be converted to those formeasuring j( )X by replacing cwith jc ei .
Thus the conditional difference equation is

  r t r rD = D + D j
 [ ] [ ] ( )c c e , 5.37H

i

and the vacuumSMEbecomes

 r g r g r= + j[ ] [ ] ( )d dt c dW c e . 5.38H
i

5.3. Generalizedmeasurement ofX andY:Heterodyne detection
Heterodynemeasurement can be thought of as simultaneousmeasurement of two orthogonal field quadrature
components, e.g., + †b b and- -( )†i b b . In our qubitmodel, this corresponds to simultaneouslymeasuring
along two orthogonal axes in the x-y plane of the Bloch sphere, e.g., s s s+ = =- + Xx and s s- =- +( )i
s p= = ( )Y X 2y . Obviously, it is not possible tomeasure these two-qubit observables simultaneously and
perfectly, since they do not commute, butwe can borrow a strategy employed in optical experiments tomeasure
two quadrature components simultaneously. The optical strategymakes two ‘copies’ of thefieldmode to be
measured, by combining thefieldmodewith vacuum at a 50-50 beamsplitter; this is followed by orthogonal
homodynemeasurements on the two copies. This strategy works equally well for our qubit probes, oncewe
define an appropriate beamsplitter unitary for twoqubits,
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*h hs s h s s
h h

Ä + Ä
= ñá + ñá + ñá + ñá + ñá + ñád d

- + + -
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( ) ≔ [ ( )]
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cos sin , 5.39i i

where h h= d∣ ∣ei . Specializing to h p= -i 4 yields

p- = ñá + ñá + ñá + ñá + ñá - ñá≔ ( ) ∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )i gg gg ee ee ge ge eg eg ge eg eg geBS BS 4
1

2
. 5.40

This ‘beamsplitter’ behaves rather strangely when excitations are fed to both input ports, but this is not an issue
since the second (top)port of the beamsplitter is fed the ground state, as illustrated infigure 9.

It is useful to note here, for use a bit further on, that the beamsplitter unitary, whenwritten in terms of Pauli
operators, factors into two commuting unitaries,

p
s s

p
s s= Ä - Ä⎜ ⎟ ⎜ ⎟⎛
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⎞
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. 5.41x y y x

This factored form is easy toworkwith and leads to

   
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p s s p p s s p
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, 5.42

x y y x

z z z z x y y x

which immediately confirms equation (5.40).
To calculate theKraus operators for heterodynemeasurement, we project the first probe qubit onto the

eigenstates of the spin component s=X x and second probe qubit onto the eigenstates of the spin component
s=Y y. Before proceeding to that, we deal with a notational point for the eigenstates of s p= = ( )Y X 2y ,

analogous to the notational convention for sx that is summarized infigure 1. The conventional quantum-
information notation for the±1 eigenstates of sy is  ñ = ñ  ñ∣ (∣ ∣ )i i0 1 2 , whereas aswe introduced in
equation (5.33), we are using eigenstates that differ by a phase factor ofi:

f f pñ ñ = ñ ñ = ñ  ñ =  ñ    ( ) ( )∣ ≔ ∣ ( ) ∣ ∣ ∣ ∣ ∣ ( )g i e i i i i2
1

2

1

2
0 1 . 5.43i

When all this is accounted for, the Kraus operators come out to be

 
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4 4

wherewe have introduced two binary variables,±and ̃, to account for the fourmeasurement outcomes. The
juxtaposition of these two variables,

~
, denotes their product, i.e., the parity of the two bits.We see this

notation at work in

 =   =  ~ ~p~ ( ) ( ) ( )e i i
1

2
1

1

2
1 . 5.45i 4

The POVMelements that correspond to theKraus operators(5.44) are

 t=  D +p p
 

 ~
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5.46i i

,
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† †c c i c c1

4 2 2
. 5.47

The second formof theKraus operators in equation (5.44) is equivalent tofinding theKraus operators of the
primary probe qubit for the heterodynemeasurementmodel on the left side offigure 9.One sees from this
second form that the sx and sy measurements on the two probe qubits are equivalent to projecting the primary
probe qubit onto one of the following four states:

Figure 9.Beamsplitter implementation of heterodynemeasurement of x and y spin components of a qubit probe.
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These four states are depicted infigure 10; they carry two bits of information, which are the results of the sx and
sy measurements in the beamsplittermeasurementmodel. The four states not being orthogonal, theymust be
subnormalized by the factor of 2 that appears in equation (5.44) to obtain legitimate Kraus operators.

We conclude that as far as the primary probe qubit is concerned, the heterodynemeasurement can be
regarded as flipping a fair coin to determinewhether onemeasures p s s= +( ) ( )X 4 2x y or

p s s- = -( ) ( )X 4 2x y . The±1 eigenstates of p( )X 4 are f p ñ∣ ( )4 ; f p fñ = ñ+ ++~∣ ( ) ∣4 has
eigenvalue+1, and f p fñ = ñ- -∣ ( ) ∣4 has eigenvalue−1. The±1 eigenstates of p-( )X 4 are f p- ñ∣ ( )4 ;
f p f- ñ = ñ+ +∣ ( ) ∣4 has eigenvalue+1, and f p f- ñ = ñ- -+~∣ ( ) ∣4 has eigenvalue−1.Notice that the fair coin
that decides between these twomeasurements is the parity of themeasurements of sx and sy in the heterodyne
circuit offigure 9. Figure 11 goes through the circuit identities that convert the heterodyne circuit involving
measurements on two probe qubits to one that is a coin flip that chooses between the twomeasurement bases on
the primary probe qubit.

We now turn to deriving the explicit formof the conditional heterodyne difference equation,
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This timewe need two binary random variables to account for the dependence onmeasurement outcome:

tD    D~ ( ) ( )R : , , 5.50x

tD    D~ ~( ) ( )R : , . 5.51y

Wewant towrite the equation in terms of innovations again, sowe need the probability distribution of
measurement outcomes in order to calculate  D[ ]Rx and  D[ ]Ry :
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Themarginal probabilities, given by
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allowus to calculate expectation values,

 å t t rD =  D  = D
+



⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )

†
R

c c
Pr Tr

2
, 5.55x

 å t t rD =  D  = D
+~ ~

~

⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( ) ( )

†
R

ic ic
Pr Tr

2
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Wecan alsofind the correlationmatrix,

 å t tD = D  = D


[( ) ] ( ) ( )R Pr , 5.57x
2

Figure 10.The four states, f f pñ =  ñ
~

  
~∣ ∣ ( )4, , whose scaled projectors on the primary probe qubitmake up the heterodyne

POVM, as viewed in the x-y plane of the Bloch sphere, shown relative to the positive and negative eigenstates of s = Xx and s = Yy .

19

QuantumSci. Technol. 3 (2018) 024005 J AGross et al



 å t tD = D  = D~

~
[( ) ] ( ) ( )R Pr , 5.58y

2

 å tD D = D   =
~ ~

 ~
[ ] ( ) ( )R R Pr , 0. 5.59x y

,

Thefirst nonvanishing cross-moment ofDRx andDRy is  tD D = D[( ) ( ) ]R Rx y
2 2 2. Thismeans thatwe should

think of tD D = D
~

R Rx y as a stochastic termof order tD , and this is too small to survive the limit tD  0

(only stochastic terms of order tD survive this limit).
Returning now to the difference equation (5.49), we find, to linear order in tD ,

    

 

r t r r r

r r r r

D = D + D + D

- D D + + +

 ~ [ ] ( [ ] [ ] )

( [ ( ( ) )] [ ] [ ( )] [ ] ) ( )† †

c c ic

R R ic ic c c c ic

1

2
1

2
Tr Tr , 5.60

x y

x y

,

wherewe introduce the innovations for the two randomprocesses,

 D D - D≔ [ ] ( )R R , 5.61x x x

 D D - D≔ [ ] ( )R R . 5.62y y y

The innovations are zero-mean randomprocesses, with variance    tD = D = D[( ) ] [( ) ]x x
2 2 . Since, as we

discussed above, the termproportional toD DR Rx y is a zero-mean stochastic termof order tD (and thus
vanishes in the continuous-time limit), we drop it, leaving uswith the difference equation

Figure 11.Circuit-identity conversionof the original heterodynemeasurement circuit offigure 9,which involves a beamsplitter on two
probe qubits followed by sx and sy measurements on the twoqubits, to a fair-coinflip,mediatedby the ancillary (top)probe qubit, that
chooses betweenmeasurements of j( )X 4 and j-( )X 4 on the primary (bottom)probequbit. Thefirst stepwrites the beamsplitter
unitary BS as a product of the two commuting unitaries in equation (5.41). The second stepmakesmajor changes. Itfirst discards the
second piece of the beamsplitter unitary because that piece commuteswith themeasurements and thushas no effect onoutcome
probabilities. It then changes the initial state of the ancillary probequbit to ñ∣e by including a bitflip s ;x surrounds the beamsplitter
unitary on the topwirewith p 2 rotations about z at the expense of changing the top-wire sx in the beamsplitter unitary to s- y , i.e.,
s p s p= - ( ) ( )†R R2 2 ;x z y z andfinally, surrounds the beamsplitter unitarywithHadamard gates, s s= +( )H 2x z , onbothwires,
without changing the beamsplitter unitary because s s= -H Hy y . The third stepdiscards thefirst z rotationon the topwire because it
only introduces an irrelevant phase change; pushes the sx on the topwire to the end of the circuit,with the signof the second sy in the
beamsplitter unitary changing along theway andwith the gateultimately being discarded because it becomes a sy gate preceding the sy

measurement; converts themeasurements to sz measurements byusing s s p s p= = ( ) ( )†H H HR R H2 2 ;z x z y z andfinally introduces
an initial CNOTgate, which doesnothing since it acts on the initial state ñ∣e on the topwire. The fourth steppushes theCNOTthrough to
the end of the circuit: the twoHadamards reverse the direction of theCNOT, putting the control on the bottomwire and the target on the
topwire; pushing thisCNOTthrough the beamsplitter unitary transforms the s sÄy y to s s- Äx z . After thismove, the bottom
Hadamard is pushed through the beamsplitter unitary, further converting the s sÄx z to s sÄz z . Thefifth step converts the

beamsplitter unitary to a rotation and a controlled rotationusing  s s p= - Ä -s s p s pÄ Ä[ ( ) ]e i eexp 4 ;i
z z

i8 1

2
8z z z pushes theCNOT

through the sz measurements to becomea classical controlledoperation that doesnothing if the outcomeof the bottommeasurement is
the eigenvalue+1 ( ñ∣e ) andmultiplies the result of the topmeasurement by−1 if the outcomeof the bottommeasurement is the
eigenvalue−1 ( ñ∣g ); andfinally pushes theHadamardon the bottomwire through themeasurement, converting it to ameasurement of
sx . The sixth step converts the controlled rotation into a classically controlled rotationof the bottomqubit, controlled on the outcomeof
the sz measurementon the top qubit; thisfinal circuit embodies the fair-coinflip version of the heterodynemeasurement. The
apparently irrelevantCNOT introduced in the third step is actually crucial.Whenpushed to the endof the circuit, itmakes the outcome
of the coinflip the parity of the originalmeasurements of sx and s ;y the parity thus chooses between themeasurement of p( )X 4 and

p-( )X 4 on the primary probe qubit. The classical version of thisCNOTat the endof the circuit is there to get strict equivalence to the
original circuit; it returns the classical bit carried by the topwire to the outcomeof the sy measurement in the original circuit.
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    r t r r rD = D + D + D ~ [ ] ( [ ] [ ] ) ( )c c ic
1

2
. 5.63x y,

Whenwe take the continuous-time limit, the innovations D x y, become g dWx y, , where dWx y, are
independentWeiner processes, i.e.,  =[ ]dW 0x y, and  d=[ ]dW dW dtj k jk. The resulting SME is

  r g r g r g r= + +[ ] ( [ ] [ ] ) ( )d dt c dW c dW i c
1

2
. 5.64x yHet

The unconditionalmaster equation, obtained by averaging over theWeiner processes, is, of course, the vacuum
master equation (5.18).

Notice that the heterodyne SME(5.64)has the same form as homodyne SME(5.30), except that the former
has twoWeiner processes acting independently in the placewhere the latter has just one. This is a consequence of
the heterodynemeasurement’s having provided information about two quadrature components of the system,
+ †c c and -( )†i c c . These two real-valuedWiener processesmay be interpreted as a single complex-valued

Wiener process, as in the original formulation of this unravelling byGisin and Percival [83]. Their quantum state
diffusion equationwas conceivedwithout reference to anymeasurementmodel, butWiseman andMilburn soon
demonstrated the correspondence to heterodynemeasurement [84].

5.4. Summary of qubit-probemeasurement schemes
To end this section, we briefly summarize the results. Throughout this section, we kept the probe initial state
fixed as the ground state ñ∣g , andwe kept the interaction unitary fixed as that in equation (5.1).What changed
fromone subsection to the next was the kind ofmeasurement on the probe qubits. Section 5.1 analyzed
measurements of the probe qubits inZ basis, which is analogous to photon-countingmeasurements for probe
fields; this resulted in a SME that is identical to the photon-counting SME. Section 5.2 consideredmeasurement
of the probes in theX basis, which is analogous to homodynemeasurements on probe fields; this resulted in a
stochasticmaster equation that is identical to the homodyne SME. Section 5.3 derived the stochasticmaster
equation for a generalizedmeasurement on the probe qubits that is analogous to heterodynemeasurement on a
probefield; the SME is identical to the heterodyne SME. The results for vacuumphoton-counting, homodyne,
and heterodynemeasurements are summarized in table 1, as well as the comparable information for homodyne
measurement of an arbitrary quadrature.

6.Quantum trajectories forGaussian probe-qubit states

In this section, we generalize the results of the previous section by addressing the following question: Canwe
extend our qubit bathmodel, so successful in capturing the behavior of vacuum stochastic dynamics, to describe
more general Gaussian stochastic dynamics? ByGaussianwemean that the probefield is in a statewith a
GaussianWigner function. Gaussian baths are capable of describing combinations ofmeanfields (probefield in
a coherent state), thermalfluctuations (probe field in a thermal state), and quadrature correlation/
anticorrelation (probefield in a squeezed state). These baths have been thoroughly studied in the literature.
Wiseman andMilburn, who didmuch of the primarywork in [57, 84, 85], summarize the results inWiseman’s
thesis [63] and in their joint book [66]. Important relatedwork exists on simulationmethods [86, 87] and the
mathematical formalismbehind these descriptions [88–91].

To handle the case of a vacuumprobefield in terms of qubit probes, it is sufficient, we found, to have afixed
initial probe state ñ∣g and thefixed interaction unitary(5.1). To handle the general Gaussian case in terms of
qubit probes, wemust allow a variety of initial probe states, includingmixed states, as one does withfields, but
we alsofind it necessary to allowmodifications to the interaction unitary(5.1). The reason is that a qubit has
nowhere near asmuch freedom in states as even theGaussian states of a fieldmode; thus, for example, to handle
a squeezed bath in terms of qubits, we have tomodify the interaction unitary to handle the quadrature-
dependent noise that for afield bath comes fromputting thefield in a squeezed state.

Table 1. Input state,measurement basis, Kraus operators, and type of resulting stochasticmaster equation (SME); j( )X is the arbitrary
probe quadrature defined in equation (5.32).

Initial state Measurement basis Kraus operators SME

ñ∣g ñ ñ∣ ∣e g, t t= D = - D †K c K c c,e g
1

2
Jump

ñ∣g f ñ = ñ  ñ∣ (∣ ∣g e1

2
 t t=  D - D ( )†K c c c1

2

1

2
HomodyneX

ñ∣g f j ñ = ñ  ñj


-∣ ( ) (∣ ∣ )g e ei1

2
j t t=  D - Dj

( ) ( )†K e c c ci1

2

1

2
Homodyne j( )X

ñ∣g f ñ = ñ +  ñ~
 

~ ( )∣ ∣ ( )∣g i e1,
1

2

1

2
 t t= + D   - D

~
 

~ ( )( ) †K i c c c1,
1

2

1

2

1

2
Heterodyne
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To guide our generalization procedure, we recall in section 6.1 some facts about the standard field-mode
analysis; we also review how standard input-output formalismof quantumoptics emerges from this analysis.
We then proceed in section 6.2 to the translation to probe qubits. Throughout these discussions, we labelfield
operators with the letters b andB, andwe label the analogous operators for probe qubits with a andA.

6.1. Gaussian problem for probefields and input-output formalism
For a probe field divided up into the discrete temporalmodes of section 4, we can introduce the quantumnoise
increment,

òt gD D =
+

≔ ( ) ( )B b ds b s . 6.1n n
t

t

n

n 1

Gaussian bath statistics of thefield are captured by thefirst and secondmoments of these increments:

t a t b g aáD ñ = á ñ D = D = ( )B b a, , 6.2n n n n n

t táD D ñ = á ñD = D ( )† †B B b b N b, 6.2n n n n

t táD ñ = á ñD = D ( )B b M c, 6.2n n
2 2

t tá D D ñ = á ñD = D[ ] [ ] ( )† †B B b b d, , , 6.2n n n n

where bn is themean probefield,N is related to themean number of thermal photons, andM is related to the
amount of squeezing. These interpretations aremademore precise in sections 6.3–6.5. The parametersN andM
satisfy the inequality

 +∣ ∣ ( ) ( )M N N 1 , 6.32

which ensures that thefield state is a validGaussian quantum state. Noise increments for different time segments
are uncorrelated, in accordance with theMarkovian nature ofGaussian noise.

Much of the quantum-optics literature works directly with the quantumWeiner process or infinitesimal
quantumnoise increment, ( )dB t , which is defined as an appropriate limit ofDBn,

ò g= D = D
+

D  D 
( ) ≔ ( ) ( )dB t b s ds t b Blim lim , 6.4

t

t dt

t dt
n

t dt
n

where the limiting form assumes =t tn. Equation (6.4) is analogous to the relationship between classical white

noise x ( )s and theWeiner process ò x
+

≔ ( )dW s dst t

t dt
. TheGaussian bath statistics of an instantaneous field

mode are described by thefirst and secondmoments of ( )dB t ,

b b g aá ñ = =( ) ( ) ( ) ( ) ( )dB t t dt t t a, , 6.5

á ñ =( ) ( ) ( )†dB t dB t N dt b, 6.5

á ñ =( ) ( )dB t M dt c, 6.52

á ñ =[ ( ) ( )] ( )†dB t dB t dt d, . 6.5

As a first step in our generalization to qubits below, we consider the unconditionalmaster equation for
general Gaussian baths in the continuous limit (taken from equation (4.254) of [66]):

*

*

 r b g b g r g r g r

g g r g g r

= - + + +

+ + )
([ ( ) ( ) ] ( ) [ ] [ ]

[ [ ]] [ [ ]] ( )

† †

† †

d dt t c t c N c N c

M c c M c c

, 1

, , , , . 6.61

2

1

2

Notice that, as is well known, the terms linear in c, i.e., those proportional toβ, are a commutator that
corresponds toHamiltonian evolution; indeed, thisHamiltonian is the system evolution one gets if one replaces
the bath by itsmeanfield, neglecting quantum effects entirely. Just as we discussed for an externalHamiltonian
in section 4, thesemeanfieldsmust varymuch slower than W1 . In comparing equation (6.6) and other results
between our paper and [66], it is important to be aware of the distinction between our definitions of the c
operators.We choose c to be a dimensionless systemoperator, whereas inWiseman andMilburn, it contains an
implicit factor of g , which is pointed out in the paragraph below their equation (3.155).

Stochasticmaster equations for a general Gaussian bath, conditioned on the sorts ofmeasurements
considered in section 5, are significantlymore complicated than the unconditionalmaster equation (6.6) and are
the subject of sections 6.3–6.5.

Before getting to the qubit-probemodel, however, we pause to review how this is related to the input-output
formalismof quantumoptics. From the interaction unitary(4.20), we can calculate how the probe-field
operators for each time segment change in theHeisenberg picture. Tomake the distinction clear, we now label
all theHeisenberg probe operators before the interaction asDBn

in. The output operators are obtained by
unitarily evolving the input operators
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which shows that the outputfield is the scattered inputfield plus radiation from the system.We can calculate the
number of quanta in the output probefield,


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t
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In the literature these are known as input-output relations. Analyses using input-output relations werefirst used
in quantumoptics to analyze the noise added as a bosonicmode is amplified [92, 93] and,most importantly, in
the pioneering description of linear damping by Yurke andDenker [94]. The input-output relations display
clearly how the probefield is changed by scattering off the system. Althoughwework in the interaction picture in
this paper, one can see the input-output relations at work indirectly in our results. Specifically, the conditional
expectation of themeasurement result at the current timestep [see, e.g., equations (5.11) and (5.25) and similar
equations below] is the trace of the relevant output operatorwith the initial field state and a conditional system
state.

Experienced practitioners of input-output theorymight express concern about the termproportional to
[ ]†c c, in equation (6.8), but not toworry.When one takes the expectation of this equation in vacuumor a
coherent state, the commutator termbecomes too high an order in tD and thus can be ignored. For thermal and
squeezed baths, equation (6.8) is irrelevant sincewe cannot sensibly performphoton counting on suchfields due
to thefield’s infinite photon flux (which can be identified in ourmodel as the finite photon-detection probability
in each infinitesimal time interval).

6.2. Gaussian problem for probe qubits
Tomake the correspondence to our qubit-probemodel, we define a qubit quantum-noise increment analogous
to the probe-field quantumnoise increment(6.1):

tD D≔ ( )A a . 6.9n n

In section 5, we consistently chose an to be the qubit lowering operator, but in this section, wefind it useful to
allowmore general possibilities.We remind the reader that in the picture of time incrementsDt , weworkwith
the dimensionless time interval t gD = Dt , not withDt itself. Themainway thismight cause confusion is that
if we introduce a continuous-time noise increment =dA dt an for a qubit probe—or use the continuous-
time field increment =( )dB t dt bn—wehave to remember the factor of g in gD = DA t an n.

For probe qubits prepared in the (possiblymixed) stateσ (distinguished from the similarly notated Pauli
operators by subscripts or lack thereof), wewrite the qubit bath statistics as

a t b g aáD ñ = D =s ( )A a, , 6.10n n n n

táD D ñ = Ds ( )†A A N b, 6.10n n

táD ñ = Ds ( )A M c, 6.10n
2

tá D D ñ = Ds[ ] ( )†A A d, . 6.10n n

For the choice s-≔ ( )an
n that we used in section 5, with vacuumprobe state s = ñá∣ ∣g g , these relations are

satisfiedwith a = = =N M 0. Notice thatwith a slight abuse of notation, whichwe have already used and
which can be excused because we onlywant to get the scalingwith γ right, we have
b g a t g g a= á ñ = áD ñ = D =dt dA A dt , which implies that b g a=n n, as displayed above.

Replacing the explicit s- in the interaction unitary(5.1a)with themore general qubit operator a (and thus
s+with †a ), we get a new interaction unitary,

 

 

t t= Ä + D Ä - Ä + D Ä - Ä

= Ä + Ä D - Ä D + Ä D - Ä D

( ) ( )

( ) ( ) ( )

† † † †

† † † †

U c a c a c a c a

c A c A c A c A

1

2
1

2
, 6.11

I n n n n

n n n n

2

2

whichwe use throughout the remainder of this section, specifying the operator an appropriately for each case we
consider. Using this new interaction unitary, we find that the expectation values(6.10) are the only properties of
the bath that influence the unconditionalmaster equation,
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Here Trpr denotes a trace over the nth probe qubit; in the interaction unitary and themaster equation, we only
keep terms to linear order in tD or, equivalently, quadratic order inDAn. This tells us that satisfying
equations (6.10) is a necessary and sufficient condition for reproducing theGaussianmaster equationwith our
qubitmodel. Since a SME implies amaster equation, (6.10) is also a necessary condition for reproducing the
corresponding conditional evolution, i.e., theGaussian SMEs, with our qubitmodel. This serves as a guiding
principle for exploring nonvacuumprobes in the qubitmodel.

Notice that we could develop an input-output formalism for probe qubits, analogous to that forfields in
equations (6.7) and(6.8). Since an and

†an do not satisfy the canonical bosonic commutation relations, however,
the qubit input-output relationwill not have the same form as the field relations(6.7) and(6.8). Another
complication in the qubit input-output formalism is the dependence of an on theGaussianfield state wewant to
model, which results in a state-dependent input-output relation. This complication shows up in the field input-
output relations as well, and so is not unique to our qubitmodel. Everythingwouldwork out right oncewe
included the probe initial state and the appropriatemeasurement, but these complicationsmean that the qubit
input-output formalismdoes not have the simple interpretationwe can attach to the vacuum field version, sowe
do not develop it here.

6.3. Coherent states andmean-field stochasticmaster equation
Oneway to extend the qubitmodel presented so far is to to generalize to nonvacuumGaussian pure states, the
simplest of which is a coherent state. For afield probe, we create a coherent state with awavepacketmeanfield
b ( )t by applying to the vacuum the continuous-time displacement operator [95],

*òb b b-( )[ ( )] ≔ [ ( ) ( ) ( ) ( )] ( )†D t dt t b t t b texp . 6.13

Touse this continuous-time displacement operator, it is often convenient towrite it as a product of displacement
operators for thefieldmodes bn of the time increments, during each of which themeanfield is assumed to be
essentially constant, yielding

b a=[ ( )] ( ) ( )D t D , 6.14
n

n

where

* * *a = =b b t a a a aD - D - D - D( ) ≔ ( )( ) ( )† † †
D e e e , 6.15n

t b b b b B Bn n n n n n n n n n n n

is the displacement operator for the nth fieldmode bn and b b g a= =( )tn n n. Applying this displacement
operator to vacuum creates a product coherent state, inwhich the fieldmode bn for the nth time increment is a
coherent state withmean number of photons b g a tD = D∣ ∣ ∣ ∣tn n

2 2 . Thus, in the continuous-time limit, the
mean rate at which photons encounter the system is b g a=∣ ( )∣ ∣ ( )∣t t2 2.

Up till this point in this section, we have retained the subscript n that labels each time increment, but from
here on, as in section 5, we omit this label because it is just a nuisance when dealingwith the time increments one
at a time.We only note that the omitted n dependence is necessary to describe a time-changingmean
field a b g=( ) ( )t t .

To translate from fieldmodes to qubits, we let s= -a , as in section 5, andwe introduce a qubit analogue of a
displacement operator for a probe qubit,

* *a =t as a s a aD - D - D+ -( ) ≔ ( )( ) †
D e e . 6.16A A

This operator does not actmuch like thefield displacement operator for large displacements, but becausewe are
workingwith small time increments, we can assume that a tD is small and expand thedisplacement operator as





* *

*





a a a a a t

a a a t

= + D - D + D - D + D

= + D - D - D D + D D + D

( ) ( ) ( )

∣ ∣ ( ) ( ) ( )

† †

† † †

D A A A A

A A A A A A , 6.17

1

2
2 3 2

1

2
2 3 2

where thefinal formusesD = = D( )†A A02 2 since s= -a . Throughoutwework to linear order in tD , without
bothering to indicate explicitly that the next-order terms are tD( )3 2 . The aficionadomight notice
equation (6.17) is related to the quantum stochastic differential equation for the displacement (or ‘Weyl’)
operator; see equation (4.11) of [64].
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Applying the displacement operator to the ground state ñ∣g gives the normalized probe coherent states,

a a

a t a t

a t a t
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= - D ñ + D ñ

= - D ñ + D ñ

∣ ≔ ( )∣
( ∣ ∣ )∣ ∣

( ∣ ∣ )(∣ ∣ ) ( )

D g

g e

g e

1

1 . 6.18

1

2
2

1

2
2

The state(6.18) is analogous to a field-mode coherent state because it reproduces themean-field bath statistics
(and therefore the unconditionalmaster equation):

a táD ñ = Da ( )A a, 6.19

áD D ñ =a ( )†A A b0, 6.19

áD ñ =a ( )A c0, 6.192

tá D D ñ = Da[ ] ( )†A A d, . 6.19

In calculating the difference equation for any kind ofmeasurement on the probe qubits, we necessarily use
normalized post-measurement system states. Sincewe normalize the post-measurement state we canworkwith
an unnormalized probe initial state, because themagnitude of the probe initial state cancels out when the post-
measurement state is normalized. In particular, it is convenient towork herewith an unnormalized version of
the coherent states,

a a tñ = ñ + D ñ∣ ∣ ∣ ( )g e , 6.20

keeping inmind that the resulting Kraus operators are off by a factor of a t- D∣ ∣1 1

2
2 and POVMelements and

probabilities ofmeasurement outcomes are off by a factor of a t- D∣ ∣1 2 .
We focus nowon the case of performing photon counting on the probes, i.e., ameasurement in the basis
ñ ñ{∣ ∣ }g e, . This results inKraus operators,

a t a= á ñ = - D +∣ ∣ ( ) ( )† †K g U c c c a, 6.21g I
1

2

a t a= á ñ = D +∣ ∣ ( ) ( )K e U c b, 6.21e I

which are analogous to equations 4.53 and4.55 in [66] (in comparing, recall that aHamiltonian term can be
added in trivially). Aswe observed for the vacuumcase in equations (5.21) and(5.44), both the homodyne and
heterodyneKraus operators are linear combinations of the photon-counting Kraus operators.

Following our treatment of the vacuumcase for photon counting in section 5.1, we nowfind a difference
equation



*

 

  

r a r t a r

t a a r r a r

D = D + - D +

= D - + + D +

D
⎡⎣ ⎤⎦[ ]

([ ] [ ] ) [ ] ( )

† †

†

N c c c c

c c c c, , 6.22

N

D

1

2

whereDN is the bit-valued randomvariable introduced in section 5.1, i.e.,D =N 0 for outcomeg and
D =N 1 for outcomee, and  D = D - D[ ]N ND is the photon-counting innovation(5.15). Taking the
continuous-time limit gives theGaussian SMEwith amean field for the case of direct detection,



*

 

  

r b g r b g g r

b g b g r g r b g r

= + - +

= - + + +

⎡⎣ ⎤⎦[ ]

([ ] [ ] ) [ ] ( )

† †

†

d dN c dt c c c

dt c c c d c, , 6.23

D

D

1

2

where b g a= ; this result is also found in [66]. The driving terms due to themeanfield are those of a
Hamiltonian *g b b-( )†i c c , as wewould get if we replaced the probe operators with theirmean values. The
unconditionalmaster equation for amean-field probe follows from retaining only the deterministic part of
equation (6.23) and agrees with equation (6.6)whenwe set = =N M 0.

An equivalentmethod for dealingwith a bathwith ameanfield,more attuned to the approachwe use later in
this section, is discussed at the end of section 6.5 and is sketched infigure 15.

6.4. Thermal states
Having dealt with a pure state that carries ameanfield, we turn now toGaussian states that havemore noise than
vacuum, i.e., thermal baths. A thermal state at temperatureT is defined by

s
-

-
≔

[ ]
( )e

eTr
. 6.24

H k T

H k Tth

B

B
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For afieldmode at frequencyω, theHamiltonian is w= +( )†H a a 1

2
, and the corresponding thermal state is

given by

ås =
+ +

ñá
=

¥ ⎛
⎝⎜

⎞
⎠⎟ ∣ ∣ ( )

N

N

N
m m

1

1 1
, 6.25

m

m

th
0

where

 -w
≔ ( )N

e

1

1
6.26

k TB

is themean number of photons.
The thermal state for a qubit probe is diagonal in the basis ñ ñ{∣ ∣ }g e, with the ratio of excited-state

population to ground-state population being +( )N N 1 :

s =
+
+

ñá +
+

ñá∣ ∣ ∣ ∣ ( )N

N
g g

N

N
e e

1

2 1 2 1
. 6.27th

This state has an obvious problem, however, since if we choose s= -a ( t sD = D -A ), wefind that
t s s sáD D ñ D = = á ñ = ++ - ∣ ∣ ( )†A A e e N N2 1th th . Indeed, no qubit state hasmore than one excitation in it,

and the thermal state(6.27) has atmost half an excitation. It is easy to deal with this problem, however, by
introducing an effective qubit field operator,

s= + - ( )a N2 1 , 6.28th

which goes into the qubit increment tD = DA ath. This increases the strength of the coupling of the qubit
probes to the system in away that yields the desired bath statistics,

áD ñ = ( )A a0, 6.29th

táD D ñ = D ( )†A A N b, 6.29th

áD ñ = ( )A c0, 6.292
th

tá D D ñ = D[ ] ( )†A A d, . 6.29th

Aglance at the interaction unitary(6.11) shows that the rescaled coupling strength is g g= +( )N2 1N , i.e.,

  t s s t s s= Ä + + D Ä - Ä + + D Ä - Ä+ - + -( ) ( ) ( ) ( )† †U N c c N c c2 1
1

2
2 1 . 6.30Ith,

2

The power delivered by this idealized broadband thermal bath is infinite, so photon counting yields
nonsensical results. Instead, we consider homodyne detection on the bath, i.e., measurement in the basis(5.20),
which avoids the infinite-power problem. Because the probe state is amixture of two pure states, ñá∣ ∣g g and
ñá∣ ∣e e , we needKraus operators corresponding to each combination of probe pure state andmeasurement

outcome in order to calculate the unnormalized updated state (see equation (3.29)):

f t t=
+
+

á ñ =
+
+

 D + - D +  ⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ ( ) ( )†K

N

N
U g

N

N
N c N c c

1

2 1

1

2

1

2 1
2 1

1

2
2 1 , 6.31g Ith,

f t t=
+

á ñ = 
+

D + - D +  ⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ ( ) ( )† †K

N

N
U e

N

N
N c N cc

2 1

1

2 2 1
2 1

1

2
2 1 . 6.32e Ith,

The±at the head of the expression for K e can be ignored, since Kraus operators always appear in a quadratic
combination involving theKraus operator and its adjoint.We are interested in the state after ameasurement that
yields the result±, and thismeans summing over the two possibilities for the initial state of the probe,

r
r r

r
=

+


   

[ ]
( )

† †K K K K

ETr
, 6.33

g g e e

where

 t+ =  D
+
+

    
⎛
⎝⎜

⎞
⎠⎟≔ ( )† †

†
E K K K K

c c

N

1

2 2 1
. 6.34g g e e

is the POVMelement for the outcome±.
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The resulting difference equation for the system state is

 

 

 

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r t t
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† †

†

† †

c c
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N
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N

N c N c

N c N c
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N c Nc

Tr

2 1
1

2 1 2 1

1

1
2 1

1 , 6.35H

wherewe use the same randomprocess tD =  DR and innovation  D = D - D[ ]R RH as for the
vacuumSME for homodyning. In the continuous-time limit, the difference equation becomes

  r g r g r g g r= + + +
+

+ -( )( ) [ ] [ ] [( ) ] ( )† †d dt N c N c
dW

N
N c N c1

2 1
1 , 6.36

where dW is theWeiner process that is the limit of the innovation. This result agrees with equations 4.253 and
4.254 of [66]whenwe setM=0 in those equations. The unconditional thermalmaster equation retains only the
deterministic part of equation (6.36) and agrees with equation (6.6)whenwe set b = 0 andM=0.

The strategy of increasing the coupling strength clearly allows us to handle the thermal-state SME, but it is
worth spelling out in a littlemore detail how that works, i.e., howwe are able tomimic afieldmode that has all
energy levels occupied in a thermal state with a qubit that has only two levels. Because the thermal state for a field
mode is diagonal in the number basis, the terms from r sÄ( ) †U UI Ith that survive tracing out the probefield are
those balanced in bm and †bm:

g s g s- D - D[ ] [ ] ( )† † † †t c c b b t cc b bTr Tr . 6.37n n n n
1

2 th
1

2 th

The normally ordered expressionwith †b bn n corresponds to the system absorbing an excitation from the bath,
while the antinormally ordered expressionwith †b bn n corresponds to the system emitting an excitation into
the bath.

Focusing just on the coupling strength for these two processes, the relevant expressions are

å åg s g
g

g

= =
+

+

=
+

=
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=
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, 6.38
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0 0

where

=
+ +

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( )m N

N

N

N
Pr

1

1 1
6.40

m

is the thermal probability form photons givenmean numberN and

g g+≔ ( ) ( )N2 1 6.41N

is a rescaled interaction strength. The terms have beenwritten so as to suggest the following: absorption occurs
with overall probability +( )N N2 1 and effective interaction strength g +( )N m N2 1 , which depends on the
number of photonsm in thefieldmode, and emission occurs with probability + +( ) ( )N N1 2 1 and effective
interaction strength g + + +( )( ) ( )N m N2 1 1 1 . The absorption and emission probabilities are, respectively,
proportional to the absorption and total (spontaneous plus stimulated) emission rates given by the EinsteinA
andB coefficients for a collection of two-level atoms in thermal equilibriumwith an optical cavity at temperature
T [96, section 1.2.2]. Since á ñ =m N , both of the effective interaction strengths average to the rescaled
interaction strength gN . This is what allows us to replace the effective interaction strengths by their average and
pretend that only two bath levels undergo absorption and emission.

It is worth noting herewhat happens if wemeasure the rotated quadrature component j( )X of
equation (5.32) instead of s=X x, i.e., if wemeasure in the basis of equation (5.33). TheKraus operators
become

f j t t=
+
+

á ñ =
+
+

 D + - D +j
  ⎜ ⎟⎛

⎝
⎞
⎠( )∣ ∣ ( ) ( )†K

N

N
U g

N

N
N e c N c c

1

2 1

1

2

1

2 1
2 1

1

2
2 1 , 6.42g I

i
th,
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f j t t=
+

á ñ = 
+

D + - D +
j

j
 

-⎜ ⎟⎛
⎝

⎞
⎠( )∣ ∣ ( )

( )

† †K
N

N
U e

e N

N
N e c N cc

2 1 2 2 1
2 1

1

2
2 1 .

6.43

e I

i
i

th,

The jei at the head of the expression for K e can be ignored, since aKraus operator always appears in
combinationwith its adjoint. Thus all the results for homodynemeasurement of j( )X follow from those for
homodynemeasurement of sx by replacing c by je ci . In particular, the difference equation and the limiting SME
are given by

 


r t r r rD = D + + +
D

+
+ -j j


-( )( ) [ ] [ ] [( ) ] ( )† †N c N c

N
N e c Ne c1

2 1
1 , 6.44H i i

  r g r g r g g r= + + +
+

+ -j j-( )( ) [ ] [ ] [( ) ] ( )† †d dt N c N c
dW

N
N e c N e c1

2 1
1 . 6.45i i

6.5. Pure and thermal squeezed states
Whenwe turn our attention to squeezed baths, the use of qubit probes immediately presents a new challenge.
This comes from the obvious fact that if we choose sµ -a , as in all previous work in this paper, the second
moment that quantifies squeezing, táD ñ = DA Mn

2
sq , cannot be nonzero for any choice of qubit-probe state

since s =- 02 . To surmount this obstacle, it is clear thatwe shouldmake a different choice for a; fortunately,
once one has formulated the problemproperly, the right choice becomes obvious, although it has not been
considered previously.

To see how to proceed, consider first the case offieldmodes in pure squeezed vacuum,

f mñ ñ∣ ≔ ( )∣ ( )S r, vac , 6.46sq

which is generated from vacuumby the squeeze operator,

m -m m-⎡⎣ ⎤⎦( ) ≔ ( ) ( )†S r r e b e b, exp . 6.47i i1

2
2 2 2 2

The squeeze operator conjugates the field annihilation operator b according to

m m = - m( ) ( ) ≕ ( )† †S r b S r b r e b r b, , cosh sinh , 6.48i2
sq

yielding newfield operatorsbsq. Using this transformation, it is easy to see that á ñ = á ñ =b b 0sq sq vac and

= á ñ = á ñ = ( )† †N b b b b rsinh , 6.49sq sq sq vac
2

= á ñ = á ñ = - m ( )M b b e r rsinh cosh . 6.50i2
sq sq

2
vac

2

Westress that for all our results on a pure squeezed bath, equations (6.49) and(6.50) are the expressionsweuse to
relate the squeezing parameters r andμ to thebathparametersN andM of (6.5). Notice that for this case of pure
squeezedbath, the inequality(6.3) is saturated. In this subsection,wefind it useful to let *= +( )M M M 2R and

*= - -( )M i M M 2I denote the real and imaginary parts ofM.
The transformation(6.48) is the key to translating from fieldmodes to qubits.What the transformation

allows us to do is tomodel squeezed noise in terms of vacuumnoise that has a quadrature-dependent coupling to
the system. In this section, we again focus on homodynemeasurements of the probe; just as for thermal states,
this is because of the infinite photon intensity of the infinitely broadband squeezed states we are considering. As
part of the overall transformation, the homodynemeasurement is also transformed tomeasurement of another
observable. The transformation and the translation fromfieldmodes to qubits are depicted and described in
detail in terms of circuits infigure 12.

The conclusion is that we canmodel squeezed noise in terms of qubits by starting the probe in the ground
state ñ∣g and having it interact with the system via an interaction unitary obtained from equation (6.11) by
substituting

s s

s s

-

=
-

-
+

m

m m

- +≔

( )

a r e r

r e r
i

r e r

cosh sinh

cosh sinh

2

cosh sinh

2
6.51

i

i

x

i

y

sq
2

2 2

in place of a. The resulting interaction unitary is

 

 

t t

t s s t s s

= Ä + D Ä - Ä + D Ä - Ä

= Ä + D Ä - Ä + D Ä - Ä+ - + -

( ) ( )

( ) ( ) ( )

† † † †

† †

U c a c a c a c a

c c c c

1

2
1

2
, 6.52

Isq, sq sq sq sq
2

sq sq sq sq
2
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where

+ m≔ ( )†c c r e c rcosh sinh 6.53i
sq

2

is a species of squeezed systemoperator.
The qubit operators reproduce the general pure state, but zero-mean-fieldGaussian bath statistics for

tD = DA asq sq:

áD ñ = ( )A a0, 6.54gsq

t táD D ñ = D = D ( )†A A r N bsinh , 6.54gsq sq
2

t táD ñ = - D = Dm ( )A e r r M csinh cosh , 6.54g
i

sq
2 2

tá D D ñ = D[ ] ( )†A A d, . 6.54gsq sq

Thuswe know that the qubitmodel generates the desired unconditional system evolution.
A helpful way to think about this transformation is as amodification of the coupling of the system to the

bath. Just as for thermal states, wherewewere able tomake up for a limited number of excitations in the bath by
increasing the interaction strength, herewe compensate for the limitation that the qubit ground state has equal
uncertainties in sx and sy bymodifying the originally symmetric coupling to s s s= = -- ( )a i 2x y to the
asymmetric ‘squeezed’ coupling embodied in the operator asq of equation (6.51). One sees the effect of the
coupling strengthsmost plainly when m = 0, inwhich case s s= --( )a e i e 2;x

r
y

r
sq i.e., the coupling of sx to

the system is reduced by the squeeze factor -e r , and the coupling of sy is increased by the same factor. The
change in coupling strengths is not the only twist, however. The Pauli operators s = Xx and s = Yy are
transformed under the squeezing transformation into

s m s m+ = - +≔ ( ) ( )†X a a r r rcosh cos 2 sinh sin 2 sinh , 6.55x ysq sq sq

s m s m- = + +≔ ( ) ( )†Y ia ia r r rsin 2 sinh cosh cos 2 sinh . 6.56x ysq sq sq

These operators have the same commutator as sx and sy, i.e., s s s= =[ ] [ ]X Y i, , 2x y zsq sq , but unlike sx and sy,
they are correlated in vacuumwhen m ¹sin 2 0:

m+ = = -( ) ( )X Y Y X r r M2 sin 2 sinh cosh 2 . 6.57I
1

2 sq sq sq sq
vac

This vacuum correlation is howour qubitmodel captures the correlation between quadrature components in
the squeezed state of a fieldmode.

Asmentioned above, we focus on homodyne detection, which in our transformed and translated scheme,
corresponds tomeasuring the observable Xsq of equation (6.55), but Xsq is not a normalized spin component.
We can, however, write Xsq as

j= ( ) ( )X L X , 6.58sq sq

Figure 12.The top row shows the transformation of thefield-mode squeezed-bath circuit into a formwhere the squeezed noise,
instead of being described by an initial squeezed state of a fieldmode, is described by squeezed field operators in the interaction unitary
and in themeasured observable. In the left-most circuit, thefieldmode starts in the squeezed vacuum(6.46); it interacts with the
system via the joint unitaryUI of equation (4.20);finally, it is subjected to a (homodyne)measurement of the observable + †b b . The
middle circuit introduces squeeze operators so that thefieldmode starts in vacuum, and the joint unitary and themeasurement are
ready to be transformed. The third circuit shows the result of the transformation: thefieldmode starts in vacuum; it interacts with the
system via the joint unitaryU Isq, , inwhich thefield-mode creation and annihilation operators in equation (4.20) are replaced by the
transformed operators bsq and

†bsq of equation (6.48); finally, the observable + †b bsq sq ismeasured on thefieldmode. The bottom row
shows the corresponding squeezed-bath circuit for a qubit probe; this is a direct translation of the rightmost field-mode circuit to a
qubit probe in themannerwe are accustomed to. Themiddle and left-most circuits are not available to qubits, because the two-
dimensional Hilbert space of the probe qubit cannot accommodate squeezed vacuumor a squeeze operator. The qubitmodel involves
a probe that starts in the ground state ñ∣g ; interaction of the system and the probe qubit is described by the interaction unitaryU Isq, of
equation (6.52), which is obtained by substituting asq of equation (6.51) for a in the interaction unitary(6.11); andfinally, a
measurement of the observable + †a asq sq on the qubit.
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where

m+ -≔ ( )L r r r1 2 sinh 2 cos 2 sinh cosh 6.592

and j( )X sq is the normalized spin component of equation (5.32), with the phase angle defined by

-j
m-

≔ ( )e
r e r

L

cosh sinh
. 6.60i

i2
sq

Since the factor L in Xsq changes only the eigenvalues, not the eigenvectors of themeasured observable, we can

say that we aremeasuring the spin component j( )X sq , instead of + †a a ;sq sq either way, we aremeasuring in the

basis f j ñ∣ ( )sq .Making this change brings our qubitmodel for homodynemeasurement on pure squeezed noise
into itsfinal form, depicted infigure 13.

The qubitmodel is now identical to the vacuumqubitmodel formeasurement of an arbitrary spin
component, sowe can obtain the results for the present case by appropriating the results for vacuum
homodyning, replacing cwith csq of equation (6.53) and choosing the homodyne angle to bejsq of
equation (6.60). Formulas helpful inmaking this replacement are given in appendix A. The resultingKraus
operators are


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with corresponding POVMelements
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Likewise, the conditional difference equation is

*

*

  

 




r t r r

t r r r r

r

D = D + D

= D + + + +

+
D

+ + - +

j


⎜ ⎟⎛
⎝

⎞
⎠[ ]

[ ] [ ]

( ) [ ] [ ] [ [ ]] [ ]

[( ) ( ) ] ( )

† † †

†

c e c

N c N c M c c M c c

L
N M c N M c

1
1

2
, ,

1

2
, ,

1 , 6.63

H
i

H

sq sqsq

and the SME is

 r g r g r= + j[ ] [ ] ( )d dt c dW c e , 6.64i
sq sq sq

which becomes
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6.65

This SME is presented as equations 4.253 and4.254 in [66]; see also section 4.4.1 ofWiseman’s thesis [63].
Generalizing to a squeezed thermal bath for a fieldmode, for which the inequality(6.3) is not saturated,

proceeds by representing a squeezed thermal bath as a thermal state(6.25) towhich the squeeze operator(6.47)
has been applied:

Figure 13. Final qubit circuit for pure squeezed noise and a homodynemeasurement of sx . In ourmodel of this situation, the probe,
initially in the ground state ñ∣g , interactswith the systemvia the unitaryU Isq, of equation (6.52) and then is subjected to ameasurement
of the spin component j( )X sq . Thismodel is identical to that of figure 12 except that themeasurement of j+ = ( )†a a L Xsq sq sq is
replaced by the equivalentmeasurement of j( )X sq .
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s m s m= ( ) ( ) ( )†S r S r, , . 6.66th,sq th

For this squeezed thermal state, the bath parametersN andM are functions both of the squeezing parameters r
andμ and of the ‘thermal excitation number’ Nth:

á ñ≔ ( )†N b b a, 6.67n nth th

= á ñ = á ñ = + +( ) ( )† †N b b b b N r N b2 1 sinh , 6.67th,sq sq sq th th
2

th

= á ñ = á ñ = - + m( ) ( )M b b N e r r c2 1 sinh cosh . 6.67i2
th,sq sq

2
th th

2

Making this squeezed thermal state the initial state of the fieldmode gives the circuit for a squeezed thermal bath.
Transforming the squeezing to appear not in the initial state, but in the interaction unitary and the homodyne
measurement, is the same as for a squeezed-vacuum input and is depicted infigure 14(a).We emphasize that for
the case of squeezed thermal bath, equations (6.67) are the expressions we use to derive the bath parametersN
andM from the thermal parameter Nth and squeezing parameters r andμ.

We need only to combine ourwork on thermal baths and pure squeezed baths to translate the rightmost
circuit infigure 14(a) to a qubit probe. The result of the translation is depicted infigure 14(b). The initial state of
the probe qubit is the thermal state(6.27), nowwritten as
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The interaction unitaryUI is translated by letting a in equation (6.11) be the squeezed annihilation
operator(6.51), furthermodified by being rescaled by the thermal coupling factor +N2 1th , i.e.,

tD = DA ath,sq th,sq, where

s s+ = + - m
- +≔ ( ) ( )a N a N r e r2 1 2 1 cosh sinh . 6.69i

th,sq th sq th
2

The resulting interaction unitary is
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where csq is the squeezed systemoperator of equation (6.53). The homodynemeasurement of sx is transformed

to ameasurement of j+ = ( )†a a L X ;sq sq sq aswe discussed previously for a pure squeezed bath, we can regard
this as ameasurement of the normalized spin component j( )X sq , with the phase angle defined by
equation (6.60).

The qubit operators tD = DA ath,sq th,sq reproduce the general, but zero-mean-fieldGaussian bath
statistics:

áD ñ = ( )A a0, 6.71th,sq th

Figure 14. (a)Field-mode circuits for a squeezed thermal bath. The circuit on the left, inwhich the fieldmode begins in squeezed
thermal state sth,sq , is transformed so that the effect of the squeezing appears not in the initialfield-mode state, but in the interaction
unitary and in the observable that ismeasured on thefieldmode. In the circuit on the right, the interaction unitaryU Isq, is obtained by
replacing the field-mode creation and annihilation operators in equation (4.20)with the transformed operators bsq and

†bsq of
equation (6.48); themeasured observable is obtained from the same replacement. (b)Qubitmodel for squeezed thermal bath. The
unitaryU Ith,sq, is understood to be derived from the interaction unitary(6.11) by substituting ath,sq of equation (6.69) in place ofa or,
equivalently, from the thermal interaction unitary(6.30) by substituting in place of s- the squeezed operator asq of equation (6.51).
The homodynemeasurement is ameasurement of = + †X a asq sq sq , but rescaled to be ameasurement of the normalized spin
component j( )X sq , with the homodyne angle jsq determined by equation (6.60).
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t táD D ñ = + + D = D[( ) ] ( )†A A N r N N b2 1 sinh , 6.71th,sq th,sq th th
2
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2

th th
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tá D D ñ = D[ ] ( )†A A d, . 6.71sq sq th

For the conditional evolutionwe note that the circuit infigure 14(b) is the same as that for a thermal probe
with no squeezing, subjected to a homodynemeasurement specified by the anglejsq of equation (6.60), andwith
the systemoperator c replaced by the squeezed systemoperator csq of equation (6.53). In particular, just as the
thermal bathwith no squeezing has the two pairs of Kraus operators in equation (6.42), the squeezed thermal
bath gives the two pairs of Kraus operators,
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The corresponding POVMelements for themeasurement outcomes±are
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In these results we introduce
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(see equations (A4) and (A5)).
Updating the system state tofind the conditional difference equation is done using equation (6.33), with the

result
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Thefinal result is identical to that given in equation (6.63) for the case of a pure squeezed bath (since
¢ = + +L N M2 1R , which is what L is in the case of pure squeezed bath), except that nowN andMneed only

satisfy the inequality(6.3), rather than saturating it. Thismeans that the corresponding SMEhas the formof
equation (6.65), but with L replaced by ¢L . Notice that in the final formof the difference equation and the SME,
all explicit reference to Nth disappears, whereas theKraus operators do depend explicitly on N ;th this is because
theKraus operators involve projections onto the two possible initial states, ñ∣g and ñ∣e , of the probe qubit,
whereas the difference equation and the SMEonly involve appropriate averages over these two possibilities.

The case of a squeezed thermal bath is nearly themost general case of a Gaussian bath, with pure-squeezed
and unsqueezed-thermal baths emerging as special cases. The only thing unaccounted for in the squeezed-
thermal case is ameanfield. It is easy to add ameanfield to the current paradigm; the procedure for doing so is
sketched infigure 15. The key point is tomodify the interaction unitary(6.11) by replacing awith the operator
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 a t s s a t+ D = + - + Da
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The effect of this is to add to the interaction unitary(6.70) the additional term *t a aD -( )†c c .When this
interaction unitary evolves a density operator ρ, the additional term leads to a commutator, *t a a rD -[ ]†c c , ,
which is, of course, just the commutator that describes themean-field evolution in the difference equation; it
becomes themean-field commutator *b g b g r-[ ]†dt c c , in the SME. Themean-field terms appear only
in the deterministic part of the SME and do not affect the conditional evolution.

Perhaps as interesting as the success of the qubit techniquewe develop here is the failure of a variety of other
techniques, which generally are unable to capture the conditional SME correctly. A sampling of these other
techniques, which typically involve eithermore than one probe qubit in each time segment or probes withmore
than two levels, is discussed in appendix B.

7. Strong interactions at random times

In this section, we consider a different variety of continuousmeasurement. Instead of probing the systemwith a
continuous streamofweakly interacting probes, we take inspiration from [97] and send a sequence of strongly
interacting probes distributed randomly in time.We show that this technique for ‘diluting’ sequential
interactions, i.e., bymaking the interactions occur less frequently as opposed tomoreweakly, bears some
resemblance to the cases discussed before, but ultimately yields an inequivalent trajectory picture. A slight

Figure 15. (a)Field-mode circuits for a squeezed thermal bathwith amean field. Thefield-mode displacement operator a( )D is
defined in equation (6.15). The first circuit, inwhich thefieldmode begins in squeezed thermal state sth,sq , which is then displaced, is
transformed so that the effect of the squeezing and the displacement appears in the interaction unitary and in the observable that is
measured on thefieldmode. In the last circuit, the interaction unitary aU Isq, , is obtained from the joint unitary(4.20) by replacing b
with a t+ Dbsq , where bsq is the squeezed annihilation operator of equation (6.48); themeasured observable is obtained from the
same replacement, except that the displacement can be ignored on the grounds that it does not change themeasured basis, only the
eigenvalues in that basis. (b)Qubitmodel for squeezed thermal bathwith amean field. The interaction unitary aU Ith,sq, , is understood
to be derived from the interaction unitary(6.11) by substituting aath,sq, of equation (6.77) in place ofa. The homodynemeasurement
is ameasurement of = + †X a asq sq sq, but rescaled to be ameasurement of the normalized spin component j( )X sq , with the
homodyne angle jsq determined by equation (6.60).

Figure 16.Poissonmeasurement circuit. The interaction between the systemqubit and the probe qubit is the controlled unitaryV of
equation (7.4). Given that primary (lower) probe qubit begins in the ground state ñ∣g and that it ismeasured in the eigenbasis f ñ∣ of
sx , the result is ameasurement of sz on the system. The ancilla qubit on the top begins in the state c l lñ = - D ñ + D ñ∣ ∣ ∣t e t g1 .
In the left circuit, the ancilla qubit is subjected to ameasurement of sz , the result of which controls classically the application of the
joint unitaryV. The joint unitary is thus appliedwith probability lDt ; in the continuous-time limit, this yields a sequence of
measurements of sz on the system,which are Poisson-distributed in timewith rateλ. In the right circuit, the classical control ismoved
through themeasurement of sz to become a quantum control, with themeasurement of sz telling onewhether the joint unitaryVwas
applied to the system and the probe.
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variation on the dilution scheme is seen, however, to provide an interpretation of inefficient detection equivalent
to the commonly employedmodel of attenuating the field incident on a photodetector with a beamsplitter.

Probe dilution generalizes section 5 by considering a qualitatively different interaction, whilefixing an initial
probe state, and thus complements the generalization carried out in section 6, where the focuswas on varying
the initial probe state. The probabilistic interaction of a single qubit probe during a time intervalDt can be
modeled as a joint unitary interaction (not necessarily weak) between the system and the probe that is controlled
off an ancilla qubit; this interaction is followed by strongmeasurements of the primary probe and the ancilla, as
illustrated infigure 16.Measurement of the ancilla determines if the interaction between the system and the
probe occurred or not; thus, depending on the result of the ancillameasurement, the probemeasurementmight
ormight not reveal information about the system. By choosing the state of the ancilla so that the probability of
the interaction occurring is lDt , the continuous limit can be thought of as a long sequence of single-shot
measurements occurring at Poisson-distributed timeswith constant rateλ.

The probe/system interactionwe consider is generated by an interactionHamiltonian of the form(4.16),
except that we convert to qubit probes bymaking the standard replacement s -bn . To achieve strong
interactions, we now allowDt to be as large as or even larger than g1 . A glance at the derivation of the
interactionHamiltonian(4.16) in section 4 shows that for such strong interactions, we cannot neglect the
sidebandmodes in each time segment. Thuswe cannot consistently use such a strong interaction in the case of a
probefield, but instead should think of the interaction as coming directly from the interactionwith a sequence of
qubit probes, perhaps two-level atoms. That said, the interactionHamiltonianwe assume for each probe time
segment is

g
s s

D
Ä - Ä+ -≔ ( ) ( )†H i

t
c c , 7.1

with corresponding joint unitary for the time segment,

q q s s= = Ä - Ä- D
+ -
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2

wherewe define q gD≔ t2 . To ensure a strong interaction, we hold θ constant in the limitD t 0.
When dealingwith these strongly interacting probes, we are not justified in truncating the Taylor expansion

of the exponential. Thismakes it difficult to draw general conclusions for all kinds of systems and all coupling
operatorsc, sowe retreat to investigating a particular example to illustrate what happens.We assume the system
is a qubit that is coupled to the probe through the operator s=c z . Thus the strong probe/system interaction
and subsequentmeasurement on the probe yield ameasurement of sz on the system. The interaction
unitary(7.2) becomes
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where q s q-( ) ≔R ey
i 2y is a rotation of the probe qubit by angle θ about the y axis of the Bloch sphere. This

interaction is conveniently thought of as a controlled operation, with the systemqubit as control and the probe
qubit as target. If the system is in the excited state ñ∣e , the probe qubit is rotated by q- about y; if the system is in
the ground state ñ∣g , the probe qubit is rotated by θ about y.

We assume that the probe starts in the ground state and that after the interactionwith the system, it is
subjected to ameasurement of sx, i.e., ameasurement in the basis f ñ∣ of equation (5.20). Under these
circumstances, it is easy to see that themeasurement on the probe yields information about the z component of
the system’s spin. Indeed, it becomes an idealmeasurement of sz if we choose q p= 2, so that the interaction
unitary is

 p s s p p= Ä + Ä = ñá Ä - + ñá Ä≔ ( ) ( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )V V i e e R g g R2
1

2
2 2 . 7.4z y y y

This leaves us in the good-measurement limit defined by [97]. One sees the perfect correlation between system
and probe after the interaction in

a b a f b fñ + ñ Ä ñ = ñ Ä ñ + ñ Ä ñ- +( ) ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )V g e g g e
1

2
. 7.5

Tomake the strongmeasurement events correspond to a Poisson process, we control the unitaryV off an
additional ancillary probe qubit that is initialized in the state

c l lñ = - D ñ + D ñ∣ ∣ ∣ ( )t e t g1 . 7.6
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The controlled unitary is defined in the sameway as the previously encounteredCNOTas

 Ä Ä ñá + Ä ñá≔ ∣ ∣ ∣ ∣ ( )V e e V g gC . 7.7

The ancilla qubit ismeasured in the eigenbasis of sz . The unitaryV is applied to the system and the primary
probe qubit when the result is ñ∣g , which occurs with probability lDt . The protocol for a single time segment is
summarized in the circuit diagrams offigure 16.

TheKraus operators for obtaining result±on the probe qubit and result g or e on the ancilla qubit are
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The ancilla outcome, g or e, is not something forwhichwe actually record ameasurement outcome, its purpose
beingmerely tomock up a Poisson process, sowe coarse-grain over thosemeasurement outcomes tofind the
unnormalized conditional-state updates:
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It is informative to compare thismodel of occasional strongmeasurements with our previously discussed
model of continuousweakmeasurements. To do so, notice that if we remove the ancilla qubit from the circuit in
figure 16 and replace the strong interaction unitaryVwith the analogousweak interaction unitaryUI of (5.1),
letting s=c z , we are left with the homodynemeasurementmodel analyzed in section 5.2. TheKraus operators
for thismodel are given by equation (5.21)with s=c z , i.e.,
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2
; 7.10z
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The corresponding unnormalized conditional-state updates are

r r g rs s r g s rs r=  D + + D -  ( ( ) ( )) ( )†K K t t
1

2
. 7.11z z z z

The unnormalized conditional state-update rules equations (7.9), (7.11) reveal an important distinction
between infrequent strong interactions and constant weak interactions. The rs s r +( )z z terms correspond to
conditional stochastic evolution, while the s rs r-z z terms correspond to the unconditional average evolution.
In the case of infrequent strong interactions, the conditional and unconditional terms have the same scalingwith
respect to the time intervalDt , in contrast to the different scalings of these two terms in the case of continuous
weak interactions. Thismeans, in particular, that nomatter what the Poisson rateλ is, the stochastic steps
corresponding to the conditional evolution are of orderDt , not the Dt of a continuousweak interaction, and
thus have vanishing effect on the trajectory in the continuum limit. The strongmeasurements, which project the
systemonto an eigenstate of sz , occur too infrequently to have any effect on the conditional evolution.
The±measurement outcomes are pure noise, providing no information about the system, and the conditional
and unconditional evolutions are identical.

Somethingmore interesting happenswhenwe combineweak interaction strengthwithmeasurements that
does not always happen. If we assume that q g t= D = Dt2 2 is small, thenwe are back in the domain of
weak interactions. If we also define h lD≔ t to be a finite number between 0 and 1, thenwe are in a situation
where ancilla outcome g, which occurs with probability η, leads to theweak interaction, and ancilla outcome e,
which occurswith probability h-1 , leads to no interaction. This corresponds to an inefficient weak
measurement. It is easy to see that theKraus operators are
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For the unnormalized conditional updates, we have
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2
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Not surprisingly, these are the same as the updates(7.11), except for the additional factors of η in front of both
the conditional and unconditional parts of the evolution. Thismeans that we can read the SMEdirectly off the
vacuumhomodyne SME(5.30), by incorporating a factor of η on the right-hand side:
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 r h gs r h gs r= +[ ] [ ] ( )d dt dW . 7.14z z

By defining a renormalized coupling strength g hg¯ ≔ , we can put the SME(7.14) in the form

 r gs r h gs r= +[ ¯ ] [ ¯ ] ( )d dt dW . 7.15z z

This equation is in the formof ahomodynemeasurementusing detectorswith efficiencyη [66, see equation (4).238],
where the efficiency is theprobability of thedetector’s recording a count in thepresence of an excitation.Relative to
themodel in [66], the additional renormalizationof the coupling strength in equation (7.15) is because ourmodel has
aprobabilistic interaction followedby aperfectmeasurement insteadof a deterministic interaction followedby a
measurementwith sub-unity efficiency.

8. Examples: simulation and code

Ahelpful strategy for gaining intuition about the unconditionalmaster equations and SMEs discussed above is
to visualize the kinds of evolution they describe. The authors have published a software package in Python [98]
designed tomake such visualizations easy to produce. This package has been used to createmany of the
visualizations below and includes documentation that walks through formulating the quantumproblem in a
way that facilitates application of known stochastic-integration techniques [99].

We begin by considering a photon-countingmeasurement described by equation (5.16). Our example
system is a two-level atom, coupled to some one-dimensional continuumofmodes of the electromagnetic field
(perhaps awaveguide) that are initially in the vacuum state, with coupling described by the operator s= -c .We
additionally include a classicalfield driving Rabi oscillations between the two energy levels of the atom, as
described by a systemHamiltonian gs=H xext . The coupling to thewaveguide induces decoherence, sowe
expect the evolution of the system, ignorant of the state of thewaveguide, to exhibit dampedRabi oscillations.
This unconditional evolution is given by equation (5.18), andwhenwe solve for the evolution, as shown by the
smooth blue curve in the foreground offigure 17, that is exactly what we see.

If we put a photon detector at the end of thewaveguide, wemaintain full information about the two-level
atom. Therefore, we do not expect to see decoherence, but rather jumps in the system evolutionwhenwe detect
photons in thewaveguide.Whenwe solve for a particular instance of the stochastic evolution, as highlighted by
the discontinuous green curve infigure 17, we see the jumps corresponding to photon detection, as well as a
deformation of pure Rabi oscillations that arises from the backaction of the ‘no photon’ result fromour photon
detector.

If we insteadmonitor thewaveguidewith homodynemeasurements, the systemundergoes qualitatively
different evolution. The system state never jumps, but vacuumfluctuations appear as jaggedwhite-noise effects
in the trajectory. One instance of a stochastic homodyne trajectory is highlighted in green in the upper-right-
hand corner offigure 18. The other plots infigure 18 provide some intuition regardingwhat effects the squeezing
and thermalization of the bath have on the system.

The expression that various SMEs are ‘unravelings’ of the unconditionalmaster equation ismeant to
communicate that averages of larger and larger ensembles of trajectories converge to the unconditional
evolution. These ensemble averages are presented infigures 17 and 18 as the jagged red curves closely hugging
the smooth, blue curves of the unconditional evolution. For finite ensembles of trajectories, one still sees
vestigial qualities of the underlying stochastic evolution, although the average trajectories are visibly converging
to the unconditional evolution.

Figure 17.Comparison of photon-counting conditional evolution to unconditional open-systemdynamics. The smooth blue curve
in the foreground is the unconditional evolution. The jagged red curve that closely follows the unconditional evolution is the ensemble
average of 64 photon-counting trajectories, which are also displayed as wispy grayscale traces in the background. A single trajectory
from that ensemble is highlighted in green, exhibiting discontinuous evolution at timeswhen photons were detected (represented by
dashed vertical lines) connected by smooth, nonlinearmodifications to ordinary Rabi oscillations arising from the backaction of the
‘no photon’measurement result.
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9.Discussion and conclusion

Wehave now completed our introduction to trajectory theory, using only aminimal understanding of quantum
optics to construct an interaction unitary and iterated quantum circuit. From that starting point, we built up the
Gaussian theory using tools from finite-dimensional quantum information and computation.We found
quantum circuits to illuminate the variety of conditions required tomake theMarkov approximations.We also
found that all the relevant qualities of Gaussian bathmodes can be compressed into the single transition of a
qubit probe, capturing the effects ofmean fields with infinitesimal rotations, thermal excitations with enhanced
coupling, and squeezingwithmodified correlations between systemoperators c and †c in the interaction.We
also explored an alternativemeans of producingweak interactions with an environment, noting that stretches of
isolation punctuated by strong probe interactions can yield unconditional open-systemdynamics similar to that
of continuousweak interactions, but the conditional stochastic dynamics remain irreconcilably distinct.

Our programof qubit-izing continuous quantummeasurements could be extended in several ways. For
instance, one could imagine changing the state of the probe and deriving quantum trajectories for single-photon
[100, 101] orN-photon Fock states [102] or Schrödinger-cat states [100]. Recently Dab̧rowska et al. haveworked
out the Schrödinger-cat-state version [103] and the single-photon version [104]. In the case of a single photon
they define awavepacket creation operator overN qubits of the form
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

∣ ( )∣ ∣ ∣

∣ ∣ ( )

†B ggg g egg g geg g

gge g ggg e

1
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In addition to investigating different kinds of states, interactions, andmeasurements, we could also imagine
trying to reproduce Carmichael’s [105] andGardiner’s [106] cascaded quantum systems formalism (and its
generalization [107, 108]). In theMarkov approximation and the limit of zero delay between successive systems,
we could imagine using an input-output formalism for probe qubits, of the sort alluded to at the end of
section 6.2, to connect successive systems, or we couldwork directly in the interaction picture as we have done
throughout this paper.

Figure 18.Comparison of homodyne trajectories and unconditional evolutions for squeezed, vacuum, antisqueezed, and thermal
baths. The interpretation of the various curves is analogous to figure 17: the smooth blue curves in the foreground are the
unconditional dynamics, the jagged red curves that approximate those dynamics are ensemble averages over the 64 trajectories plotted
in the background in faint grayscale, and onemember of that ensemble is highlighted in green. As onemight expect, fluctuations in the
homodyne trajectories decrease (increase) for the squeezed (antisqueezed, thermal) bath relative to the vacuum. Astute observers
might notice that the conditional expectation values sometimes exceed the range of the observable’s spectrum.While itmight be
tempting to attribute this to some fundamental property of the interaction, these excesses are in fact artefacts of thefinite integration
step size and indicate an unphysical densitymatrixwith negative eigenvalues. The unconditional evolutions exhibit less (more)
damping for antisqueezed (squeezed, thermal) baths relative to the vacuum. This is due to a combination of howmuch information
from the system is being lost to the environment (more for squeezed, less for antisqueezed) and howmuch noise from the
environment is polluting the system (thermal noise in the case of the thermal bath).
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Such extensions hold the promise of identifying parsimonious descriptions of the associated theory, but
ultimately, we believe our approach can produce fruit beyond economy of description. The tools we emphasized
encourage a particular way of thinking about continuousmeasurements, trajectories, and feedback thatwe
believe is conducive to the development of improved forms of quantum control.
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AppendixA. Pure and thermal squeezed baths

In this appendixwe list relations that are useful for deriving the results for pure and thermal squeezed baths. The
expressions involve the squeezed systemoperatorcsq of equation (6.53) and the homodyne anglejsq of
equation (6.60).Whenwritten in terms of the squeezing parameters, r andμ, the expressions are indifferent to
whether the bath is pure or thermal; whenwritten in terms of the bath parameters, N M, , and Nth, the
expressions use equations (6.67b) and(6.67c), applicable for a squeezed thermal bath, to convert from the
squeezing parameters to the bath parameters. To specialize the same expressions to a pure squeezed bath, one
sets =N 0th .

Now the formulas:
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Appendix B.Mixed squeezed states

To evaluate potential qubitmodels formixed squeezed states, it is convenient to derive necessary and sufficient
conditions on the combination of bath stateσ, probe operatora, andmeasured observable for reproducing the
stochastic evolution for homodyne detection,much as equations (6.10) provide necessary and sufficient
conditions on the bath state and probe operator for reproducing the unconditional evolution. Since themixed
nature of the bath generally introducesmixing into the system evenwhen the bath ismonitored, it is necessary to
have at least four Kraus operators; this allows for twomeasurement outcomes and a conditional evolution for
each of those outcomes, which is coarse-grained over two different Kraus evolutions corresponding to the other
two outcomes. These Kraus operators can arise from a four-level probe in a pure initial state Fñ∣ and observable

eigenvectors ñ
~∣ (where the

~
degree of freedom is coarse-grained over to reflect incomplete information) or

froma pair of two-level probes in amixed initial state l y y l y yñá + ñá+ + +~ ~ ~   ∣ ∣ ∣ ∣and observable eigenvectors
ñ∣ .Whenwe use these arrangements with the interaction unitary

tD Ä - Ä⎡⎣ ⎤⎦( ) ≔ ( ) ( )† †U a c a c aexp , B1I

where a is afinite-dimensional operator analogous to thefield annihilation operator b, we parametrize the
resultingKraus operators up to tD( ) as
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Herewe introduce the notation that for any operatorA, á ñ á Fñ
~


~ ≔ ∣ ∣A A for the case of a pure bathwith

fourmeasurement outcomes and l yá ñ á ñ  
~ ~ ~≔ ∣ ∣A A for amixed bathwith twomeasurement outcomes.

With this notation, the various parameters become
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Just like the case of a thermal bath, the updated state is calculated by coarse-graining over one of the two binary
variables in themeasurement outcome, giving

r
r r

r
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+
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where r= + + +  ~ ~
 

† †E K K K K .
If we calculate the conditional difference equation from the parametrizedKraus operators(B2), we can

match terms to the squeezed-bath conditional difference equation (6.76) and come upwith a set of constraints
on theKraus parameters. For theα parameters, we get

a f=+ 
~ ( )a

1

2
cos , B5

a f=  ( )b
1

2
sin , B5

wherewe use the phase freedom inherent in theKraus operators tomake a
~ 0, i.e.,  f p0 2. The

constraints for theβ parameters are
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where *¢ = + + +L N M M2 1as in equation (6.75). The nature of the constraints on the γ variables always
allows appropriate values to be found, given any solution of the above equations:
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B.1. Araki-Woods
One technique that presents itself for the squeezed thermal case is the Araki-Woods construction, employed in
[88] to treat general Gaussian states with a vacuum-based technique. This construction transforms the bath
statistics from the probe state to the field operator in a slightly differentmanner than the successful technique
and puts the probe into a two-mode vacuum. The formof the updatedfield operators is

  Ä + Ä + Ä≔ ( ) ( ) ( ) ( )†b x b y b z b , B8AW

corresponding to a qubitmodel with probe initial state ñ∣gg and updated qubit field operators

  s s sÄ + Ä + Ä- + -≔ ( ) ( ) ( ) ( )a x y z , B9AW

where the constants x y, , and z are defined as

+ -≔ ∣ ∣ ( )x N M N a1 , B102

≔ ( )y N b, B10

≔ ( )z M N c. B10

The above definitions are slightly different from those presented in [88], as we have suppressed themean field
term, it being trivial to include such a term, as is described at the end of section 6.5, and changed the ordering of
the subsystems to reflect our notational conventions.

When the bath is in a pure state, = +∣ ∣ ( )M N N 12 and thus x=0. Since the only term in aAW that involves
the second is proportional to x, for a pure bathwe only need to consider the first fieldmode. In this case, using
aAW in the interaction unitary andmeasuring + †a aAW AW gives theKraus operators equation (6.61) and
therefore produces the correct stochastic evolution.

Unfortunately, even though the Araki-Woods discrete field operators give the appropriate bath statistics and
thus the correct unconditional evolution even for < +∣ ∣ ( )M N N 12 , they do not satisfy the constraints given
above to produce the correct conditional evolution. In particular, theAraki-Woods Kraus operators give us
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This only satisfies the SME constraints when = +∣ ∣ ( )M N N 12 , i.e., when the bath is in a pure state.
One indication that somethingmight break in themixed case is that the field homodyne observable,
+ †b bAW AW, ought to have degeneracy in eigenvalues, since in the field picture the thermalization of the field can

be interpreted as entanglement with an auxiliarymode that is notmeasured (i.e., wemeasure + Ä( )†b b ),
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leading to degenerate subspaces for each eigenvalue of + †b b . In the qubit picture, the homodyne observable
+ †a aAW AW has the spectrum

l =   +~
~ ∣ ∣ ( )x y z , B12

which is degenerate only in the case x=0, since  +∣ ∣z y y12 from equation (6.3). This condition ismet
only when the bath is pure.

B.2. Two-qubit setup analogous to two-mode squeezing
Tomanufacture thermal statistics, wemight think to consider the thermal state of a bathmode as themarginal
state of a two-mode squeezed state. Then,much as we did in the pure-state case, we could transfer all squeezing
from the bath state to the field operators and on to analogous qubit operators. Using the two-mode squeeze
operator,
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th th

gives us the squeezed field operator

f f= Ä( ) ( )( ) ( ) ( ) ( )( ) † ( ) † ( ) ( )b S r S r b S r S r, , B14sq
12

th
1 1 12

th

   = Ä - Ä - Ä + Äf f( ) ( ) ( ) ( )
( )

† †r r b e r r b e r r b r r bcosh cosh cosh sinh sinh cosh sinh sinh ,
B15

i i
th

2
th

2
th th

which translates to the squeezed qubit operators
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The quadrature operator for homodynemeasurement, + †a asq sq, has a problem similar to that of the Araki-
Woods quadrature operator in that its eigenvalues are nondegenerate:
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This construction fails to satisfy the Kraus-operator constraints on thermal stochastic evolution even in the
absence of squeezing ( > =N M0, 0), confirming our suspicion based on the nondegeneracy of the observable
eigenvalues.

B.3. Two-qubit squeezed-thermal state
Another simple two-qubit setup uses the probe annihilation operator

 s s=
+

Ä + Ä- -( ) ( )a
N2 1

2
B19sq

in conjunctionwith the interaction unitary ( )U asq from equation (B1) and the initial probe state
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whichwe consider as it is a positive state precisely when the parametersM andN satisfy the usual constraint
 +∣ ∣ ( )M N N12 (obtaining purity only when = +∣ ∣ ( )M N N12 ). By observation or by calculation, we see

that the bath density operator has rank two, i.e., has support only on a qubit subspace.
The consequences of thismodel are analogous to those of the Araki-Woods construction: unconditional

statistics are reproduced, but the stochastic evolution is incorrect whenmeasuring + †a asq sq. The difficulty

again appears to be a lack of degeneracy in the eigenvalues of the + †a asq sq. Specifically, this setup reproduces the

correct bath statistics, but the observable + †a asq sq has three distinct eigenvalues (unique positive and negative
eigenvalues with a twofold degeneracy corresponding to an eigenvalue of 0) instead of degenerate positive and
negative subspaces aswe expect from the field case.

Naïvely pairing half of the zero subspacewith both the positive and negative outcomes yields a SME in the
pure case very close to the correct result, except that theWiener process dW is divided by +( )N2 2 1 instead

of ¢L ; this corresponds to doing homodyne detection on a pure squeezed bathwith detectors having sub-unity
efficiency. Likewise, settingM=0 for a thermal bathwith no squeezing yields a thermal SMEwith an extra
factor of 1 2 in the stochastic term, again analogous to sub-unity detection efficiency.
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This inefficiencymakes sense given that we naïvely lumped distinguishablemeasurement outcomes
together. Unfortunately, thismodel does not provide clear alternative recipes withwhich to construct a SME, so
we do not consider thismodel any further.

B.4.Qutrit
One can alsomock up a bathwith three-level probes and field operators that give the correct unconditional
evolution.We define the qutrit probe annihilation operator to be

+ ñá + ñá( )≔ ∣ ∣ ∣ ∣ ( )a N2 1 0 1 1 2 . B21

The thermal and squeezed qutrit probe state we choose, following the reasoning bywhichwe arrived at
equation (B20), is

*
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⎠
⎟⎟≔ ( )
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N M

M N

1

2 1

0
0 0 0

0 1
. B22sq

In ourmatrix representations we have ordered the rows and columns starting from the top and left with ñ∣2 and
decreasing to ñ∣0 aswemove to the bottom and right.

The combination of the above lowering operator and state gives the correct unconditionalmaster equation.
Three-level systems present evenmore difficulty in understandingwhat to dowith the conditional evolution,
however, as the restriction to three Kraus operatorsmeans only one of themeasurement results can be coarse-
grained overmultiple (two)Kraus operators, leaving the othermeasurement result only associatedwith a single
Kraus operator and therefore producing no statisticalmixing of the system state.
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