
Designing codes around interactions: The case of a spin

Jonathan A. Gross1, ∗

1Institut quantique & Départment de Physique, Université de Sherbrooke, Québec J1K 2R1, Canada
(Dated: June 1, 2021)

I present a new approach for designing quantum error-correcting codes guaranteeing a physically
natural implementation of Clifford operations. Inspired by the scheme put forward by Gottesman,
Kitaev, and Preskill for encoding a qubit in an oscillator, in which Clifford operations may be
performed via Gaussian unitaries, this approach yields new schemes for encoding a qubit in a large
spin in which single-qubit Clifford operations may be performed via spatial rotations. I construct all
possible examples of such codes, provide universal-gate-set implementations using quadratic angular-
momentum Hamiltonians, and derive criteria for when these codes exactly correct physically relevant
errors.

Great quantum error-correcting codes shield quantum
information from a noisy environment while simultane-
ously making it easily accessible to the programmer. The
very name of these structures betrays an emphasis on
the former goal, prioritizing the exact correction of the
most likely errors. In this Letter I develop an alterna-
tive approach to finding new codes that begins by ensur-
ing straightforward logical manipulation of the encoded
quantum information.

The encoding of a qubit in an oscillator described by
Gottesman, Kitaev, and Preskill [1] is an example of
a great error-correcting code. By construction, it pro-
tects against unwanted shifts in position and momen-
tum up to a certain threshold. This protection also op-
timally corrects damping errors [2], which are the most
prevalent sources of noise in the optical, superconducting,
and mechanical systems for which the code is designed.
One can also straightforwardly perform logical opera-
tions, since the full set of Clifford operations—the largest
set of unitary gates that can be implemented easily—are
realized by Hamiltonians at most quadratic in position
and momentum—the largest set of Hamiltonians that are
easy to engineer in an oscillator. For these reasons, the
Gottesman-Kitaev-Preskill (GKP) code attracts consid-
erable theoretical and experimental attention [3–7].

Other physical systems deserve their own great error-
correction codes. While others have successfully adapted
the stabilizer approach of GKP codes to protect against
rotational errors [8], alternative single-system codes with
easy Cliffords remain unexplored. I design such codes by
starting with an algebra of physical Hamiltonians that
are natural to the system at hand. The construction
guarantees that a suitably large and discrete set of uni-
tary gates—such as logical Clifford operations—can be
implemented using only these natural physical interac-
tions. As a consequence these codes naturally offer re-
silience against relevant noise channels since environmen-
tal fluctuations typically take the form of such natural
Hamiltonians. This approach therefore succeeds in allow-
ing desired manipulations to be performed in a straight-
forward way while suppressing unwanted environmental
interference.

To put this philosophy into practice I demonstrate the
construction for large single spins, such as atomic nuclei.
Natural physical operations correspond to spatial rota-
tions of the spin, so I construct all qubit codes on which
maximal discrete sets of logical single-qubit unitaries can
be implemented via these spatial rotations. Within this
family of codes I identify the examples that exactly cor-
rect relevant experimental noise, such as dephasing, to
first order, including a code realizable in spin-7/2 sys-
tems such as antimony nuclei, a promising experimental
platform [9, 10]. The success of the construction in this
particular case builds confidence that the same approach
will bear fruit in additional physical systems.
Encoding qubits in spins.—The physics of a system

dictates which transformations are straightforward. For
large single spins the relevant physics is angular mo-
mentum, and the easy transformations are generated by
Hamiltonians linear in the angular-momentum operators
Jx, Jy, and Jz. These Hamiltonians arise naturally in
practice, for example as the result of driving the spin
with a resonant AC magnetic field. The physical uni-
taries generated by these Hamiltonians form a represen-
tation of the special unitary group SU(2) on the spin’s
Hilbert space. The explicit map from an abstract SU(2)
element to its representative physical unitary is

D : exp(−iθn̂ · σ/2) 7→ exp(−iθn̂ · J) , (1)

where σ is the vector of abstract Pauli matrices, J is the
vector of the spin’s angular-momentum operators, and
n̂ is a unit vector defining the axis of rotation. These
representative unitaries are a significantly restricted sub-
group of the most general physical unitaries that can act
on the large spin’s Hilbert space. Since these restricted
unitaries are straightforward to implement, the goal is to
find a codespace where the maximum number of logical
unitaries can be implemented by physically applying the
SU(2) representatives.

Any SU(2) representative that realizes a logical uni-
tary must map the codespace to itself. Because the SU(2)
representation for a large single spin is an irreducible rep-
resentation (irrep), the only subspaces mapped to them-
selves by the full set of SU(2) representatives are the triv-
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ial subspace containing only the zero vector and the full
Hilbert space of the spin. Neither of these alternatives
is a viable codespace. The consequence of this observa-
tion is that one must limit oneself to a proper subset of
SU(2) representatives when searching for easy physical
implementations of logical operations.

I consider two particularly relevant subsets that are
representations of finite subgroups of SU(2). The sub-
group to which I dedicate the most attention is known to
quantum-information scientists as the single-qubit Clif-
ford group [11], also called the binary octahedral group
2O [12, Ch. 7] because it is the double cover of the ro-
tational symmetry group of the octahedron in the same
way SU(2) is the double cover of SO(3). The techniques
used for 2O are easily adapted to other finite subgroups of
SU(2), and I additionally comment on an example from
the binary icosahedral group 2I that offers an attractive
experimental implementation.

For the sake of clarity I now specialize to the subgroup
2O. The advantage of restricting the set of physical oper-
ations to the representatives of 2O is that these physical
operations map nontrivial subspaces to themselves, and
these subspaces provide candidate codespaces. Specifi-
cally, the desired qubit codespaces are two-dimensional
subspaces of the spin’s Hilbert space that are mapped
to themselves by 2O representatives, and on which non-
trivial representative unitaries act nontrivially (since the
point is for these physical unitaries to act as logical Clif-
ford gates). In the language of representation theory,
the codespaces should be faithful two-dimensional irreps
of 2O obtained by restricting the SU(2) irrep to the 2O
representatives.

The criteria for the desired codespaces having been
established, I now present the representation theory of
2O needed to establish their existence.
Identifying binary-octahedral irreps.—The generators

for 2O, concretely realized as 2 × 2 special-unitary ma-
trices, are the phase and Hadamard gates

S = exp
(
−iπ2 ẑ · σ/2

)
= 1√

2
(1− iσz) (2)

H = exp
(
−iπ x̂+ẑ√

2
· σ/2

)
= 1√

2
(−iσx − iσz) . (3)

The unusual phases are a consequence of the convention
to enforce the unit-determinant constraint of special uni-
taries. Being a finite group of 48 elements, 2O possesses
only a finite number of irreps. As detailed in the Sup-
plemental Material [13], only two of these irreps satisfy
the criteria of being two dimensional and acting as log-
ical Clifford gates. Label these two irreps %4 and %5 in
recognition of their place amongst the other irreps of 2O.
These irreps are inequivalent as complex representations,
%4 straightforwardly mapping S 7→ S and H 7→ H, but
%5 mapping S 7→ −S and H 7→ −H. This inequivalence
means that codespaces cannot be split between these
two irreps, but since the projective action of a unitary
U : ρ 7→ UρU† is all that is relevant from a quantum per-

SU(2)-irrep dim. %4 mult. %5 mult.
24q 2q 2q

24q + 2 2q + 1 2q

24q + 4 2q 2q

24q + 6 2q 2q + 1

24q + 8 2q + 1 2q + 1

24q + 10 2q + 1 2q

24q + 12 2q + 1 2q + 1

24q + 14 2q + 1 2q + 2

24q + 16 2q + 1 2q + 1

24q + 18 2q + 2 2q + 1

24q + 20 2q + 2 2q + 2

24q + 22 2q + 1 2q + 2

TABLE I. Multiplicities of the irreps of interest, %4 and %5,
in the reducible 2O representation derived from the even-
dimensional SU(2) irreps. Because these irreps only appear
in even dimensions, and their multiplicities follow a pattern
that repeats every 24 dimensions, the dimension is presented
in the form 24q + 2p, where q is any non-negative integer and
0 ≤ p ≤ 11.

spective, the two representations behave identically when
considered separately.

Having identified the two relevant irreps, the task now
is to determine whether they appear in the decompo-
sitions of the reducible 2O representations obtained by
restricting the SU(2) irreps to the 2O representatives.
The decomposition of an irrep of a group into irreps of a
subgroup proceeds according to what are called branch-
ing rules [14]. These branching rules—worked out in the
Supplemental Material [13]—show that the irreps of in-
terest do not appear at all in integer spins (with odd-
dimensional Hilbert spaces). The multiplicities of these
irreps in the half-integer spins increase according to a
pattern that repeats every 24 dimensions, presented in
Table I. Spin 1/2 (dimension 2) contains the standard
irrep of 2O, but given that this is the entirety of the
Hilbert space it does not provide a code. Spin 3/2 (di-
mension 4) does not contain any of the irreps of interest,
being instead a 4-dimensional irrep of 2O. For spin 5/2
(dimension 6) and above, however, every half-integer spin
contains at least one two-dimensional codespace on which
2O representatives perform logical Clifford operations.

This result identifies how many codespaces exist in
each large single spin. The next step is to explicitly con-
struct these codes and determine their additional prop-
erties.

Constructing example codes.—Producing explicit
codewords proceeds by building projectors P% onto
irreps %4 and %5 using standard expressions from
representation theory reproduced in the Supplemental
Material [13]. The codeword |0̄〉 is taken to be an
element of the +1 eigenspace of the irrep Pauli σz, where
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irrep Paulis are defined by

σw := P%
(
i exp(−iπJw)

)
P% , w ∈ {x, y, z} . (4)

To obtain |1̄〉, simply apply σx to |0̄〉. If the irrep % oc-
curs with multiplicity 1, then the +1 eigenspace of σz is
one dimensional, and no further choices are required. If
the irrep % occurs with higher multiplicity, further prop-
erties of the code can be engineered as explored in the
discussion of the error-correction conditions by making
an appropriate choice for |0̄〉 within the multidimensional
+1 eigenspace of σz.

As an illustration, the logical 0 state for the code in
spin 5/2—the smallest nontrivial example—is

|0̄〉 =
√

1
6

∣∣ 5
2 ,

5
2

〉
−
√

5
6

∣∣ 5
2 ,−

3
2

〉
. (5)

More explicit codes are presented in the Supplemental
Material [13].
Computing with encoded qubits.—Employing these

codes in the service of quantum computation requires the
ability to do more than single-qubit logical Clifford oper-
ations. I focus now on the following minimal set of logical
operations required for universal quantum computation,

{P|0̄〉,Mσz , S̄, H̄,CZ} ∪ {T̄}, (6)

where the bars denote logical operators, P denotes state
preparation, and M denotes operator measurement. In
this set, the single-qubit Cliffords are generated by S̄ and
H̄, multi-qubit Cliffords are obtained by the addition of
CZ, and T̄ supplies a non Clifford gate. Since these allow
efficient arbitrarily precise approximation of all logical
unitaries, the ability to prepare at least one logical state
(here chosen to be P|0̄〉) and perform at least one mea-
surement (here chosen to be Mσz

) results in universal
quantum computation.

By construction these codes have Pauli and single-
qubit Clifford operations realizable with Hamiltonians
linear in angular-momentum operators (the SU(2) rep-
resentation). This construction gives the codes special
structure in the Jz basis, detailed in the Supplemental
Material [13], which additionally provides explicit recipes
for measuring logical Paulis, performing logical CZ gates
between two encoded qubits, and performing logical
T̄ gates. The strategy for performing a controlled-Z
gate (CZ) is similar to that used for rotation-symmetric
bosonic codes [15]. In the bosonic case, a cross-Kerr
interaction a†a ⊗ a†a generates the crot gate used to
perform CZ on the codespaces. In the spin case, the
analogous Jz⊗Jz interaction performs the CZ gate (up
to individual Jz corrections). As worked out in the Sup-
plemental Material [13], the CZ gate takes the following
form:

CZ = exp(iπ2 Jz⊗1) exp(iπ21⊗Jz) exp(−iπJz⊗Jz) . (7)

Again, like in rotation-symmetric bosonic codes, a
slightly more complicated single-system Hamiltonian
yields a more exotic gate. A self-Kerr interaction (a†a)2

allows one to perform an S̄ gate on the bosonic codes.
The 2O-irrep codes already have an S̄ gate using linear
Hamiltonians, so adding the analogous J2

z interaction al-
lows one to perform a T̄ gate (again up to a Jz correc-
tion). The T̄ gate so obtained, as worked out in the
Supplemental Material [13], takes the following forms for
the two different |0̄〉 supports:

T̄ =

{
exp(−iπ4 Jz) exp(−iπ4 J

2
z ) m0 = 1

2

exp(−i 5π
4 Jz) exp(−iπ4 J

2
z ) m0 = − 3

2

(8)

The Hamiltonians required for CZ and T̄ gates are
admittedly more complicated than those required for
Clifford operations. Experiments routinely modulate
quadrupolar terms such as needed for T̄ [10], though it
may be that a different technique will ultimately be re-
quired as happened to be the case for the original T̄ -gate
proposal for GKP [16].

Destructive measurement in the σz eigenbasis is pos-
sible via projecting onto the Jz eigenbasis. Since any Jz
eigenstate has nonzero overlap with at most one logical
computational-basis state—as explained in the Supple-
mental Material [13]—each possible outcome will unam-
biguously indicate a σz eigenstate.

Due to the octahedral symmetry of these codes, all the
above constructions hold when replacing z with x or y.
Correcting errors.—As alluded to in the introduction,

the fact that only a finite subset of SU(2) representatives
preserve the codespace suggests that these codes might
correct errors taking the form of small random SU(2)
representatives in much the same way that GKP codes
protect from small random displacements. Such noise is
generated by the Lindblad master equation

dρ = γ dt
∑

w∈{x,y,z}

(JwρJw − 1
2J

2
wρ− 1

2ρJ
2
w) , (9)

where γ is the depolarizing rate. For γ dt � 1, the fol-
lowing Kraus operators map ρ 7→ ρ+ dρ:

E0 = 1− 1
2γ dt ‖J‖

2 = (1− j(j+1)
2 γ dt)1 (10)

Ew =
√
γ dt Jw , w ∈ {x, y, z} . (11)

Correcting the errors corresponding to these Kraus op-
erators is equivalent to correcting random rotations to
lowest order.

In spin systems it may be more natural to think of the
dominant noise sources in terms of T2-type dephasing er-
rors Jz, T1-type relaxation errors J−, and thermalization
errors J+. Since these error operators are linear combina-
tions of the random-rotation error operators, correcting
either family of errors is equivalent. This mirrors the
situation in GKP codes, whose manifest protection of
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FIG. 1. Wigner functions for |0̄〉, |1̄〉, and the codespace pro-
jector for the icosahedral code in spin 7/2.

random-displacement errors extends to relaxation errors
as well [2].

The elements of the quantum-error-correction matrix
indicate whether the codes exactly correct such errors.
The exact-correction condition [17] is

〈ā|EjEk|b̄〉 = Cjkδab . (12)

Because of the octahedral symmetry of the codes, the
only independent EjEk pairs are J2

z , JxJy, and Jz. As
detailed in the Supplemental Material [13], these condi-
tions are satisfied if and only if 〈0̄|Jz|0̄〉 = 0.

In general it is not the case that 〈0̄|Jz|0̄〉 = 0. For ex-
ample, for the spin-5/2 code in Eq. (5), |0̄〉 has a nonzero
Jz expectation value. However, if an irrep appears with
higher multiplicity, and the projection of Jz onto the +1
eigenspace of σz has both positive and negative eigenval-
ues (or a 0 eigenvalue), then a propitious choice for |0̄〉
ensures that the quantum-error-correction criteria are ex-
actly satisfied for these first-order rotation errors. The
first spin in which one of the irreps appears with higher
multiplicity is spin 13/2. The two eigenvalues of Jz pro-
jected onto the +1 eigenspace of σz are −13/6 and 5/2,
with associated eigenvectors |0̄− 13

6
〉 and |0̄ 5

2
〉. To get a

codeword with zero Jz expectation value one takes linear
combinations of the following form:

|0̄φ〉 =
√

105
14 |0̄− 13

6
〉+ eiφ

√
91

14 |0̄ 5
2
〉 . (13)

Considerations for first-order correction of random-
rotation errors make no distinction between different val-
ues of the phase φ, leaving a free parameter that may be
further optimized over.

While satisfying the error-correction conditions guar-
antees the existence of an error-correction procedure,
the highly noncommutative nature of {Jx, Jy, Jz} errors
makes the definition of physically natural commuting sta-
bilizers difficult, though one can use the structure of the
support in the angular-momentum basis to build non-
commuting projectors that are analogous to stabilizers.
The construction of practical error-correction procedures
using such elements is an ongoing project.
Implementing in experiments.—Since nuclear spins are

obvious host systems for these codes, it would be nice to
have examples with good error-correcting properties in a
Hilbert space of dimension at most 10 (corresponding to

the largest available nuclei of spin 9/2). As just demon-
strated, the 2O codes require a larger Hilbert space to
reliably correct errors. This motivates considering an al-
ternative maximal discrete subgroup of SU(2), the binary
icosahedral group 2I, consisting of gates corresponding to
the symmetries of a regular icosahedron. Using the same
tools developed for 2O, one finds a two-dimensional 2I
irrep in spin 7/2 that allows for the correction of random-
rotation errors to first order:

|0̄〉 =
√

3
10

∣∣ 7
2 ,

7
2

〉
+
√

7
10

∣∣ 7
2 ,−

3
2

〉
. (14)

Spin 7/2 is the smallest Hilbert space in which one can
correct these errors, making this code analogous to a per-
fect block code. Additionally, the nuclear spin of anti-
mony provides an ideal physical realization of a spin-7/2
system over which impressive experimental control has
been obtained [10]. Figure 1 depicts the Wigner func-
tions for this code, defined via a self-dual kernel obeying
the Stratonovitch-Weyl postulates for SU(2) [18, 19]. See
the Supplemental Material [13] for more details.
Comparing to existing codes.—These spin codes are

unique among existing codes in protecting from random
SU(2) rotations within an irrep of SU(2). There are some
analogous examples worth mentioning, however. The
minimal qudit codes of [20] protect against a discrete
set of finite Jz-rotation errors, but are “classical” in the
sense that they offer no protection against Jz or Jy rota-
tions. The qudit analogues of the GKP code [1, 21] add
protection against some cyclic permutations of the Jz ba-
sis elements. Neither of these codes perform well against
first-order rotation noise, however, as illustrated by some
numerical experiments in the Supplemental Material [13].
Another family of codes designed to protect against ro-
tation errors are molecular codes [8]. In their current
formulation, these codes are built in spaces that are di-
rect sums of SU(2) irreps and additionally protect against
shifts in total angular momentum, making direct com-
parison difficult. Note that decoherence-free subspaces
and noiseless subsystems for random-rotation errors do
not exist in the Hilbert spaces of large single spins since
these errors generate an irrep.
Generalizing to other systems.—The construction pre-

sented for spin codes exemplifies a more general proce-
dure. One can replace the representation of the Lie al-
gebra su(2) given by angular-momentum operators with
any representation of a Lie algebra g given by physically
natural Hamiltonians on a Hilbert space. Exponentiating
these Hamiltonians will generate easily implementable
unitaries forming a representation of a Lie group G anal-
ogous to SU(2). One will then want to consider a discrete
subgroup K ⊂ G just as I considered 2O ⊂ SU(2). The
representation ofG restricts to a representation ofK, and
the small-dimensional irreps of K into which this repre-
sentation decomposes form the candidate codespaces. At
this point one must tailor the procedure to the particu-
lar set of errors and the particular discrete subgroup K.
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When considering random rotations, the error-correction
conditions were greatly simplified because the noise was
generated by Lindblad operators taken from a subalge-
bra of su(2) and 2O contained a rich set of symmetries
of this subalgebra. One expects similar simplifications
to take place in the more general case when analogous
structure is present. Some obvious candidate Lie-algebra
representations are those given by quadratic bosonic and
fermionic Hamiltonians. Pursuing the bosonic Hamilto-
nians brings the prospect of finding additional GKP-like
codes in oscillators, though the noncompact nature of the
Gaussian unitaries they generate presents qualitatively
different challenges than encountered in the SU(2) case.
Quadratic fermionic Hamiltonians generate compact Lie
groups [22, Thm. 13.1], and so provide an arena for a
much more straightforward application of the techniques
presented here.

Conclusion.—In this Letter I have constructed all
single-spin qubit codes admitting Cliffords via SU(2) uni-
taries. These codes exist for all half-integer spins larger
than 3/2 and admit the entangling gate CZ and the non
Clifford gate T̄ via Hamiltonians quadratic in angular-
momentum operators. I have also exhibited codes in
spins as small as 7/2 that exactly protect against random-
rotation errors to first order. In addition to showing
how to build better qubits out of large spins, these
achievements illustrate the power of the finite-group-
representation approach. Adapting these techniques to
systems with different algebras of natural Hamiltonians
offers a new path by which to discover useful quantum-
error-correcting codes.
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